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Abstract

Physical systems which exhibit computational properties and competencies are especially prevalent in the modern world.
Traditionally, classical and quantum computers take center stage as to what a computer is defined to be. An alternative
approach to defining what it means for a system to compute is to study unconventional candidates of a computer: A
substrate which receives information from its environment, processes the information, produces some output, and is
capable of being programmed. A minimal biological organism, C. elegans, is considered to be a computational substrate,
first by theoretically deconstructing the organism into its fundamental constituents, and then experimentally conducting
simulations based on certain iterative criteria. From these implementations, it is clear that biological organisms receive and
process information from its environment, and produce output in the form of movement. The notion of programmability
is discussed, but not experimentally validated.
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I. INTRODUCTION

Motivation

The association between physical systems and their
computability is not commonly discussed in tradi-
tional physics, yet the association’s prevalence can
be demonstrated in many contexts. Classical and
quantum computers have taken a central role as be-
ing canonical computing devices, known for their
ranges of multi-purposeful utility for solving vari-
ous classes of problems. Alternative forms of com-
puting have begun to achieve greater prominence,
such as chemical computing [8]. That being said,
currently the best framework which understands
physical systems and their properties is the human
brain. Because humans are biological organisms,
their ability to comprehend, predict and analyze
physical system’s characteristics can out compete
other computing substrates in diverse aspects.1 It
is therefore necessary to consider the computability
of a biological organism in the minimal case, and
to analyze whether this organism exhibits computa-
tional properties or not. In this project, the minimal
model, which is also analyzed in many other fields,
C. elegans, is utilized to study the computational
properties of a simplified adaptation of C. elegans.
The goal is to demonstrate that C. elegans embod-
ies specific qualities such that it can be considered
a substrate which computes. This topic is of inter-
est because the conventional association of "com-
putability" is generally associated with the classical
and quantum platforms of computation. If a frame-
work is constructed such that biological organisms
can also exhibit computational properties, but in dif-
ferent ways than classical and quantum computing
devices, this gives rise to the notion that computabil-
ity is independent of substrate, although the classes
of problems which can be solved will vary between
substrates, as visualized in Figure (1).

Synopsis of project and results

In order to investigate the computational capabili-
ties of a candidate biological organism, a minimal ex-
ample must be selected. One organism which satis-
fies elementary criteria, such as only being equipped

1Classical and quantum computers are dominant for carrying
out calculations. Despite that, these computing substrates are not
as good as humans at the discussed tasks.

Figure 1: Classes of problems which are solved by a particular
computing substrate. Because chemical and biologi-
cal computing aren’t completely solidified as comput-
ing platforms, they are respectively indicated with a
’?’. Regions of solvable classes of problems are not to
scale.

with a basic set of features, the organism’s move-
ment is uniquely described by a small set of com-
ponents, etc. is the nematode C. elegans. Next, the
computational properties of the candidate biologi-
cal organism C. elegans are analyzed by first break-
ing C. elegans down to fundamental simplified con-
stituents, whose conglomeration will be known as
an agent. The agent will be studied by attempting to
exhibit behaviors via different iterations of an exper-
iment. By enabling the agent to conduct tasks in this
experiment, respective analyses and conclusions can
be reached.

Utilizing the agent simulation software NetLogo
[11], initial results, in which an experimental simu-
lated agent whose internal capabilities are increased,
with regards to the agent’s decision making for navi-
gating its environment, are displayed and discussed.

By modifying how the agent is able to move in
the environment, and allowing the agent to achieve
a type of task completion, such as searching for a
reward, will demonstrate different outcomes. One
possible outcome is if an agent, equipped with a
memory for what a reward looks like and how to dis-
tinguish environmental differences to help achieve
a task, vs. if the agent had no memory, would
show that possessing a memory would greatly aid
the agent in its mission. These results, however,
don’t demonstrate learning, but rather it can be
inferred that the agent is capable of carrying out
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pre-programmed tasks, such that the agent was
equipped with the capabilities to execute the task
before the experiment began. More experimentation
would be required to carry out an implementation
of an agent which learns.

II. BACKGROUND

To begin, a brief introduction on the traditional
prevalence of computing will be provided, in or-
der to lay the groundwork for how other platforms
of computing would provide importance to soci-
ety at large. First, classical computing, which, in
modern times, are extremely prevalent. Presenting
some statistics for classical computing devices, cur-
rent projections show that there will be roughly 18

billion mobile devices by 2025 [9], and as of 2016
there were roughly 2 billion laptop users [7], and
at least tens of thousands of supercomputers exist
today. Classical computing is everywhere, and their
utility continues to grow as time goes on.

However, quantum computing is another realm
of computation which is being readily developed by
the likes of many companies including Google [2],
IBM [5], D-WAVE [4], among others, as well as many
university research institutions. The paradigm of
quantum computers can be broken up into three
categories: analog, annealing and universal, but
will not be discussed further.

As mentioned previously, chemical computers
are now being researched at institutions [8] with
the hopes of being able to synthesize any molecule,
which would have many kickbacks to society if con-
tinuing success is upheld.

Building on these foundations, an overview of
the essential criteria for what makes a substrate a
computer will be undertaken. Essentially the tasks
that a "computer" carrys out, are the following:

G Reads environmental input for:

F Processing (short term memory)
F Storage (long term memory)
⇒ Both are interconnected (processed input)

G Processed input is utilized for output:

F Observed decisions (calculations, move-
ment, etc.)

G Being programmable (able to be modified)

F e.g. classical computer programs are mod-
ified via code by the programmer.

where the first two main items can be more read-
ily understood across different candidate computing
substrates, while the third item can be more com-
plicated. For classical and quantum computers, if
the environment is the keystrokes generated by the
programmer, then the computer is able to be mod-
ified at the will of the environment. With a less
conventional computing substrate, such as a biolog-
ical organism, and along a similar line of reasoning,
this means that the organism must adapt according
to its environment, i.e. the organism must learn in
order to adapt to its environment. This notion will
be discussed in the Results section (V).

Because, for example the human brain (and
thereby part of a biological organism) is the best
known tool for understanding the known laws of
physics, it would be ideal to know how the human
brain can receive, process, store and output infor-
mation. Nevertheless, this would be too vast of a
problem to undergo in this project, so it is desirable
to consider a fundamental example of a biological
organism which demonstrates computational capa-
bilities. One organism in particular, which is stud-
ied across various fields including biology, neuro-
science, etc., is Caenorhabdidtis (C.) elegans, which is
a small nematode or roundworm of 1mm in length
[12]. There are many structural properties of C. el-
egans, but what motivates this research project are
the following characteristics:

G The entire neural network of C. elegans is com-
pletely mapped and visualized [3].

G Stochastic behavior is exhibited by a few pa-
rameters describing the structure of C. elegans
[6].

G Accessible enough of a subject to conduct sim-
plified simulations.

Due to these benchmarks, C. elegans is an opti-
mal candidate for asking the question: Is a biological
organism a computer?

Elements of the essential anatomy of the C. elegans
is presented in Figure (2). The organs of concern
for this project are ones which receive and process
energy or sensory input from the environment. The
organs which conduct these duties are the pharynx
and head, and the organs which process this energy
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or sensory input are the intestine and ventral nerve
cord, respectively.

Figure 2: Anatomy of C. elegans, which includes the discussed
essential anatomy essential for modelling the organ-
ism as an agent.

Effectively, the C. elegans will receive some envi-
ronmental input (light, heat, etc.) and demonstrate
some output, which is shown by movement cor-
responding to the organism’s decisions. This will
important for the Methods section (IV).

III. DYNAMICAL SYSTEM

The dynamical system to be studied in this project
is the agent, which is a simulated construction of
C. elegans, and will be detailed in the Methods sec-
tion (IV). As mentioned previously, the agent would
exhibit stochastic behavior, even though it is a mini-
mal organism [6]. How the agent moves throughout
its environment is dictated by the agent’s properties
regarding how to navigate itself to satisfy a certain
task, or carry out a specific behavior, which takes
the place of memory. This is because, if the agent is
instantiated with the ability to discern internal envi-
ronmental differences, this suggests that the agent
can readily adapt its decisions based on the task at
hand. Therefore, the more expressed criteria avail-
able to the agent in the initialization stage, the more
able the agent will be to achieve task completion.

Equations of motion

In terms of the eigenworm basis described by [10],
to support the stochasticity and random behavior
that the C. elegans movement exhibits, in terms of
the phase angle φ(t) and phase velocity ω(t), the
C. elegans activity is described by Brownian motion,
utilizing the Langevin equation:

dφ(t)

dt
= ω(t)

dω(t)

dt
= F(φ(t), ω(t)) + η(t)σ(φ(t), ω(t)) (1)

where F(φ(t), ω(t)) is the average acceleration in
terms of phase and phase velocity, and η(t) defines
a random noise function which will have some
correlation to the change in phase velocity over
time, σ(φ(t), ω(t)). [10]. Utilizing the first two eigen-
worms in the eigenworm basis, Figure (3) demon-
strates how the eigenworms affect the movement of
the C. elegans itself.

Figure 3: The variation in phase angle in terms of the first two
eigenworms, serving as a visualization tool for the
Langevin equation. From [10]

When not taking the eigenworm basis into ac-
count, the dynamical behavior of C. elegans can be
captured by the canonical Hamilton equations of
motion, described as a coupled system of damped,
driven Hamiltonian oscillators,

Q̇i =
∂H

∂Pi

Ṗi = −
∂H

∂Qi
+ C(Qi, Pi, ψ(t))

(2)

where H is the Hamiltonian describing the dy-
namical and elastic behavior of C. elegans, (Qi, Pi)

are the generalized position and momentum coordi-
nates corresponding to the ith normal mode of the
system, and ψ(t) is a function which encompasses
the proprioceptive feedback and neural processing
of the C. elegans coming into contact with the envi-
ronment [1].

IV. METHODS

First, a theoretical approach for generating an agent
in terms of fundamental components will be taken.
Then, an experimental technique describing how
such an agent would be simulated will be presented.
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Theoretical Implementation

Outlining the actions of a simplified version of C. ele-
gans, it will detect input from its environment, in the
form of light and heat, and demonstrate some out-
put in the form of decision-based movement. Con-
cisely, this can be formulated in terms of a configura-
tion alphabet:

Aconfig = {read environment, control decisions}
= {Senv,Sdec} (3)

where Senv = {photoelectric, temperature} and
Sdec = {actuators}. The composition of these sen-
sors will now formally comprise an agent, a term
which has been frequently used previously, but is
now grounded with some formalism. The term,
agent, is how C. elegans will be referred to for the
remainder of this paper.

Now, consider how the photoelectric sensor
would theoretically function within its environment
for some constant temperature T , so the actuators
are solely receiving input from the photoelectric sen-
sor. Suppose the sensor can only read the colors
Red (R) and Green (G) from the environment
for simplicity, which is summarized in Table (1):

Environmental input R G

Output to actuators 0 1

Table 1: Photoelectric sensor relays the detected environmental
input,

which can be formulated as the function
f : Acolor 7→ Ainfo such that Acolor ≡ {R,G} and
Ainfo = {0, 1}, implying that f(R) = 0, and
f(G) = 1. Then, when the agent relays this infor-
mation to the actuators, this can be defined as a
function g : Ainfo 7→ Aoutput, where Aoutput corre-
sponds to the agent’s shape basis, which is the set
of elements corresponding to the agent’s demon-
strated actions within the environment. For exam-
ple, the shape basis can be formulated as Aoutput =

{forward,right,halt} where it is implied that
reverse = (forward)−1, left = (right)−1,
while halt has no "inverse". Then the function
g can be assigned as g(0) = g(f(R)) = {halt},
whereas g(1) = g(f(G)) = {forward,right}. Fur-
thermore, the ideal agent would follow these assign-
ments with probability 1, but it is more realistic to

have the agent’s actions be dictated in a probabilistic
manner, e.g.
Pr(halt|g(0)) = ε⇒ Pr(halt|g(1)) = 1− ε.

Recapping, the photoelectric sensor is formulated
in terms of binary information processing for sim-
plicity at a constant temperature. As a succinct re-
mark, the temperature sensor would be constructed
in an analagous manner, except the environmental
input would appear to be some T < T̃ or T > T̃ ,
where T̃ is a criterion for some action. This con-
cludes the discussion of the theoretical implementa-
tion of the agent.

Experimental Implementation

For implementing a simulation of the agent, NetLogo,
an agent-based modelling software system useful
for the efficient modelling of proxies [11], was em-
ployed.

There are almost limitless possible experiments
one could assemble to demonstrate how the agent
advances through its environment. One such pos-
sibility involves the agent, equipped with a "photo-
electric sensor" which is able to detect two colors;
green and red. Suppose that the color red is associ-
ated with a form of "halt", such that once the agent
finds the color red, that red color is moved to an-
other location within the environment, while every
other portion of the environment is the color green.
Then if the agent discovers the color green, the agent
will continue to move throughout the environment
until it reaches the color red. The red color would
be transported to another location, and the process
would repeat for any number of trials, simply visu-
alized in Figure (4).

Two iterations of the experiment will now be dis-
cussed. The agent’s pre-programmed criteria will be
modified in both experiments, such that the first it-
eration includes an agent whose movements are ran-
dom, while the second iteration consists of an agent
whose movements are decisive but with the enforce-
ment of slight random perturbations to its move-
ment. The simulated environment is composed of
a grid of 50× 50 "patches" (grid squares), bounded
by an outer square. Time in NetLogo can be mea-
sured discretely in the units of ticks, which will be
exercised throughout this experimental application.
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Figure 4: Proposed experiment demonstrating how the agent
would make decisions within its environment. Once
the agent finds the red color, that red color is moved
to another location within the environment, and the
agent is tasked with finding it once more.

V. RESULTS

Experiment 1, Iteration 1

The agent is only able to move in a random direc-
tion, emulating a non-existent memory of its past
moves and its goals. The agent will continuously
move in a random direction provided by random-
ized (x, y) coordinates. A generic algorithm for the
agents behavior is given by

Algorithm 1 Agent Behavior, Implementation 1

Require: xred = random float : −50 ≤ n ≤ 50

Require: yred = random float : −50 ≤ n ≤ 50

Require: xagent = random float : −50 ≤ n ≤ 50

Require: yagent = random float : −50 ≤ n ≤ 50

while t < tmax do
<Agent rotates 0 ≤ degrees ≤ 360>
<Agent moves forward one patch>

if current patch == red patch then
<Red patch is randomized to another (x, y) coor-
dinate>

else
<pass>

end if
end while

This algorithm is demonstrated by the Figures (5)
and (6).

The amount of "ticks" that it would take for the
agent to locate the red square can be visualized with
a histogram, demonstrating the randomness of the

Figure 5: Agent before "capturing" red square, serving as the
goal of the agent.

Figure 6: Agent after "capturing" red square, and red square
moves to another location for the agent to find.

agent’s behavior in Figures (7) and (8), where the
latter histogram focuses the readers’ attention to the
plot structure where the majority of captures are
recorded.

Due to the agent having no "memory", rather lack-
ing the sensory power of determining the distin-
guishing colors, this forbade the agent to locate the
red square in a timely manner, as demonstrated by
the plots. The mean time it took for the agent to
find the red square was≈ 2271, which is excessively
long. This is due to the random nature of the agent,
consequently due to the agent lacking a memory of
its surroundings and itself. If the agent were able
to have "memory" of how to discern colors, it can
be readily concluded that the agent should not take
much time to find the red square, which is precisely
Iteration 2 of this experiment.
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Figure 7: Histogram of displaying the number of ticks the
agent took to find the red square. Total ticks =
500, 000, number of trials = 220, number of bins
= 20, mean ≈ 2271

Figure 8: A more focused version of Figure (7).

Experiment 1, Iteration 2

The agent is now equipped with the adeptness of
detecting where the red square is located within
the environment, although some randomness is in-
troduced into the movement of the agent to obtain
more sensible results. A nonexclusive algorithm for
accomplishing this task is given by Algorithm (2),
which demonstrates the discussed ideology of the
experiment.

Algorithm 2 Agent Behavior, Implementation 2

Require: xred = random float : −50 ≤ n ≤ 50

Require: yred = random float : −50 ≤ n ≤ 50

Require: xagent = random float : −50 ≤ n ≤ 50

Require: yagent = random float : −50 ≤ n ≤ 50

while t < tmax do
<Agent rotates 0 ≤ degrees ≤ 360>

if (agent > distance to red square - arbitary
distance) then
<Agent faces towards red square>
<Agent perturbed by small random rotation away
from red square>

else
<pass>

end if
<Agent moves forward one patch>

if current patch == red patch then
<Red patch is randomized to another (x, y) coor-
dinate>

else
<pass>

end if
end while

In Figures (9) and (10), data from the simulated
experiment is shown, which follows the same frame-
work as in the first iteration.

Rather interestingly, even though the agent’s
movement was not randomized in Iteration 2, the
outcome of how long it took for the agent to find
the target forms a Gaussian-esque distribution. This
could be due to the randomization of where the
target was placed after the agent found it, but not
enough experiments were completed to solidify this
conclusion. The agent undoubtedly did not take as
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Figure 9: Iteration 2 of Experiment 1. Total ticks = 5000,
number of trials = 277, number of bins = 20, mean
≈ 18.

Figure 10: A more focused version of Figure (9).

long to find the target as much as the agent did in
Iteration 1, with a mean of only ≈ 18 ticks.

Future work

These experiments could be improved in many
ways. Firstly, a larger quantity of varied experi-
ments can be conducted, with similar iterations as
the ones mentioned here, primarily with the goal

of demonstrating an agent learning, i.e. the agent
has to probabilistically adapt to its environment
to achieve some task. Secondly, more statistical
quantities can be computed, such as standard
deviations, etc. Lastly, this foundation would
ideally be studied in order to relate concepts of com-
putational mechanics to the experimental outcomes
as well. Perhaps the theoretical implementation of
the agent would be more ideally suited for such
an undertaking, where two functions could be
created which optimize for survival and reward.
The agent readily employs these functions as it
traverses the environment, especially during the
intermediate input processing stage of data being
sent to the actuators. However, these functions
would optimize for some probabilistic potential, due
to organisms not learning from errors each time
they make them. This is concisely indicated as

Input→ Process→ Output

vs.

Input→ Process→ Optimization→ Output

where the former case is demonstrated in this
paper. Then, suppose if the agent associates causality
with these functions, such as if, after a non-zero time
in its environment, the agent associates the causal
states with its environment:

G S0 7→ (halt in red zone to obtain food)
G S1 7→ (move in green zone to search for food)

then the agent has developed learning, i.e. the
agent actively optimized its probabilistic potential
for survival and reward.

VI. CONCLUSION

The main motivation of the project was to seek
out a minimal biological organism, and potentially
demonstrate its computational aptitudes via experi-
ments. The synthetic construction of the minimal bi-
ological organism, C. elegans, referred to as an agent,
clearly exhibited the properties of receiving input
from the environment, and processing said input
via memory. Through experiments, the agent was
able to perform tasks more readily if the agent was
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constructed to have a memory, as opposed to being
equipped with no working memory. The property of
programmability was not investigated in this project,
but would serve as a future next step.
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