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Motivation

Some foundational questions:

G Why does the classical realm work?

G How does the natural world do stuff ?

F What are the mechanisms behind doing stuff ? ⇐ addressing today
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Background I

There are many sectors of computing:

G Classical (laptops, phones, supercomputers, ...)

G Quantum (analog, annealing, universal, ...)

G Chemical (probabilistic, reaction-diffusion, ...)

F Biological ⇐ addressing today

**Disclaimer: I am not a biologist**
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Background II

Qualifications for a “simple” computer?

G Reads input from environment

G Utilizes input for:

F Processing (short term memory)
F Storage (long term memory)
⇒ Both are interconnected (processed input)

G Processed input is utilized for output:

F Observed decisions (calculations, movement, ...)

G Notion of programmability (ability to be modified)

F e.g. computer programs are modified via code.

More on this later.
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Ideal Biological Computing Candidate?

Caenorhabditis elegans
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What is C. elegans? I: Why?

G Entire neural network visualized and mapped [2].

G Canonical example for many ongoing studies in various fields

→ Biology, neuroscience, etc.

G Exhibits stochastic behavior with few parameters [4].

F Simple, accessible subject for studying.
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What is C. elegans? II: Essential Anatomy

G Head Contains neurons connected to nervous systems

→ sensory input from environment

G Pharynx Feeding organ

→ energy input from environment

G Intestine Processes energy input

G Ventral nerve cord Processes sensory input
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What is C. elegans? III: Simplified Anatomy
Summarizing, C. elegans will encounter:

G Input (light, heat, gradient changes, ...)

and exhibit:

G Output (decisions → movement, ...)

Concisely forming a configuration alphabet of C. elegans (agent):

Aconfig = {sensors reading environment, sensors controlled by decisions} (1)

= {Senv, Sdec} (2)

where Senv ≡ {photoelectric, temperature}, and Sdec ≡ {actuators}
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Constructing the Agent I: Photoelectric Sensor

How would the photoelectric sensor work? Simplified, logic-based:

Environmental input to sensor Red (R) Green (G)

Output to actuators 0 1

Define function f : Acolor 7→ Ainfo such that

• Acolor = {R, G} ≡ alphabet corresponding to environmental colors

• Ainfo = {0, 1} ≡ alphabet corresponding to the photoelectric processed information

⇒ relayed to actuators.

Assign f(R) = 0, f(G) = 1 (bijective)
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Constructing the Agent II: Temperature Sensor

Same logical construction as photoelectric sensor, but for T < T̃ or T > T̃ :

Environmental input to sensor T < T̃ T > T̃

Output to actuators 0 1

Analogous alphabets and functions can also be formulated.
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Constructing the Agent III: Actuators

Next, how will the agent move in an environment?

Define g : Ainfo 7→ Aoutput where Aoutput ≡ alphabet of agent’s shape (movement) basis

→ set of corresponding elements of agent’s generated behavior.

Posit the shape basis Aoutput = {forward, right, halt}, where
reverse = (forward)−1, left = (right)−1, while halt has no ”inverse”.
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Agent Interactions II: Initialization

Suppose
dT

dt
= 0, while color is varied in a closed environment.

Assign

F g(0) = g(f(R)) = {halt}
F g(1) = g(f(G)) = {forward, right}

where environmental colors (via a light shown onto the agent’s environment) ultimately
dictate the agent’s movement with some probability.

Note: Probability can be adjusted for ideal cases, e.g. Pr(halt|g(0)) = 1
as well as non-ideal cases, e.g. Pr(halt|g(0)) = ε⇒ Pr(halt|g(1)) = 1− ε
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Agent Interactions III: Experiments

From this, simple experiments can be constructed to demonstrate:

G Decision making

G Learning?

G ...
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Agent Interactions III: Experiment 1
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Agent Interactions III: Experiment 2
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Agent Interactions III: Experiment 3
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Summary

What can be concluded so far? The agent can

F Satisfy pre-programmed probabilistic criteria

F ...

How could this be improved?

G Is the agent learning? No.

G If not, what is the agent doing?

But this is what we’ve concluded!
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Reconstructing the Agent I: What is missing?

How could an agent “learn”? Create two functions which optimize for:

F Survival

F Reward

The agent would then utilize these functions to interact with processed data,
in the intermediary stage of relaying processed data → actuators.
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Reconstructing the Agent II: Information Flow

Input → Process → Output

vs.

Input → Process → Optimization → Output
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Reconstructing the Agent III: What else is missing?

However, these functions would not always work as intended.

G e.g. One agent eats bad food and dies. Another agent observes this, but eats bad
food anyways.

G e.g. One agent eats good food. Instead of eating more of the good food, agent
migrates away in search of something else.

G ...

so these functions are performing an optimization for some probabilistic potential which is
not ideal.
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Reconstructed Agent Interactions IV: Causality

If the agent associates causality with these functions ⇒ form of learning

e.g. after some time in its environment, if agent associates causal states:

G S0 7→ (halt in red zone to obtain food)

G S1 7→ (move in green zone to search for food)

then the agent has “learned” i.e. actively optimized its probabilistic potential for survival
and reward.

22 / 29



Reconstructed Agent I: Experiment 1, Take 2
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Reconstructed Agent I: Experiment 2, Take 2
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Reconstructed Agent I: Experiment 3, Take 2
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Related Work I

This project essentially constructed a framework of reinforcement learning (RL).

§ Mori et al. utilizes a mixture density recurrent neural network (MDN-RNN) to model
C. elegans stochastic behavior, and a Deep-Q neural network [3] to implement RL
[4].
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Related Work II

Movement (posture) of C. elegans has been described by an eigenworm basis [1] [5] as
opposed to a shape basis.

§ Ahamed et al. utilizes eigenworm projections to study movement in state space [1].

Figure: From [1]
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Conclusions

Next steps:

G Simulate “toy” experiments

F Various methods and experiment variations could be implemented.
F Compute computational mechanics quantities and information theory measures
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Thank you
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