
Spontaneous mutations in population dynamics,

a Fisher perspective

Arthur PLAUD

Goal The main goal of the project is to study the role of spontaneous genetic
mutations inside a population. Common causes for these mutations include en-
vironmental threads such as electromagnetic radiations, exposure to chemical
products but also manufactured products, where the two main exemples are
drugs and cigarettes.
Fisher model is an old model, maybe the simplest one ever introduced to study
genetic drift, also called natural selection, which is the way the most fit geno-
types are selected inside a population.

System The precise dynamical system is a generalization of Fisher evolution
model, with a stochastic term taking into account spontaneous mutations.
The time varying quantities are the N(ω, t), which describe the number of indi-
viduals of fitness ω at time t. The fitness, introduced by Fisher, is a summary
of the genetic information of an individual and determines how long it will live
in average, as well as how many offspring he’s expected to have.
These number of individuals are related by the following equations :
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In this equation, the first term describes genetic drift : individuals with higher
fitness tends to live longer and have more offpsring, so their number rises inside
the population. To match this description, f(ω) is taken to be a monotoni-
cally increasing function of ω. Worth noticing is that, as for the original Fisher
model, this is a fixed population size model : the relative proportion of geno-
types inside the population changes, but the total amount of individual stays
fixed. The second term, the stochastic one, also satisfies this condition, as it’s
written as a classic global balance term.
This observation leads to the necessity of adjusting the model (especially the
’normalization’ term 〈f(ω)〉) to study population growth. Indeed we expect a
high rate of spontaneous mutations to destabilize the population and lead to
extinction.
Inside the stochastic term, the quantities g(ω, ω

′
, t) describe how spontaneous

mutations modify the fitness of some individuals. These are stochastic quan-
tities and we can choose different frameworks to twist the model. The most
natural way of defining these stochastic transition rates is to make them inde-
pendant and identically distributed in time, that is :
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These hypotheses could be modified further in the study but seem like a good
starting point. For exemple in real populations, mutations will typically de-
crease the fitness level so the symmetry in h could be relaxed.
There are a lot of ways the function h can be chosen, but there seems to be 2
interesting behaviours to study : a constant h, meaning there is no correlations
between the level of fitness before and after a mutation, and a strictly decreas-
ing h, meaning mutations with the biggest change in fitness have the lowest
probabilities.

Dynamical and Computational Properties As this is a system with a
stochastic description, we are not that interested in single runs but more on
a statistic description of the behaviour. What is the long term behaviour of
the system in term of average fitness for example. Is there any sensibility to
initial conditions ? As there are many control parameters of the system (average
spontaneous mutation rate, width of the curve h if we’re not in the flat case,
...), the dependance of the system with these parameters will also be studied.
As an information related quantity, the entropy of the distribution N(ω, t) and
its change with time will be very interesting. This entropy allows us to quantify
the amount of disorder in the population : for a homogenous genotype, the
entropy will be low, and it will increase when the number of relevant fitnesses
inside the population will increase. This is a good order parameter. For now,
I don’t see a lot of connections with the study of discrete time hidden Markov
chains we did in the lecture, but I will probably find some along the way.

Methods The study will be a combination of numerical simulations and ana-
lytic computations, with the analytic part mainly focusing on computing statis-
tics of the system (stationary distribution at long time scales, average fitness,
average entropy...), whereas the simulations will focus on the transient part, the
sensitivity to initial conditions and fluctuations, nontypical behaviours.
For analytic calculations, I only expect the case h = h0 to be solvable, but I
will look for ways of including correlations in a simple enough way.

Hypothesis The main reason I engaged in this project is to study the tran-
sition from order to disorder. Indeed, in the usual Fisher evolution model, the
high-fitness population is deterministically increasing and the system tends to
uniform genotype. Actually, the model for two values of fitness leads to logistic
growth of the higher fitness type, and disappearing of the least fit one.
Here, with the addition of spontaneous mutation, which is a form of noise in the
system, we expect this order to be weakened. In the high mutation rate limit,
we actually expect the stationary distribution to be uniform over the possible
fitness values. The study of this transition will be the major focus.
Once I’ve included time-varying population size in the model, I’m also expecting
that for a high enough mutation rate, the population will die out at finite time,
as we know high mutation rate is typically non sustainable for real populations.
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Steps and Time taken - Writing the first code to run simulations and look
for interesting behaviours to study. Check that some of these properties can be
studied analytically
Writing the code will be pretty simple, but finding the right parameter range,
timescale to run the simulations and choosing the right order parameter could
take some time. The time needed is not fixed though, as there is a part of luck
involved. I would estimate it to be between 4 and 10 days.
- Once I’m settled on what I wanna show, optimizing the code to improve the
statistics. I will then be able to use higher quality plots to prove my points.
Here, it’s the coding part that could take time, I would probably guess 5 days.
- Actually running the long simulations and in the meanwhile doing the analyt-
ical calculations corresponding to some of the numerically-shown properties.
1 week should be enough for this, it will depend on how many things I wanna
study in the system but for a 1-month project, this amount will probably be
limited.
- Writing the report
Looking at my past experience in term of projectsof this size, I will estimate it
to be 3 days.
This leaves me 1 week of margin for everything that will go bad, mainly numer-
ical issues or the ”looking for interesting stuff” part at first step.
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