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Introduction

The Self-Organizing map (SOM) is a compelling example of a relatively simple  (single
layer) computational process that can derive its own structure from input data. The structure
derived is a topology preserving, PCA equivalent, dimensionality-reducing, ‘similarity’
clustering of the inputs. SOMs were designed by Tuevo Kohonen in 1982 for the explicit
purpose of capturing the dynamics that result in the topographically organized brain maps found
in the cortices of mammals. Kohonen also showed that these maps can discover
“representations” or “internal structures” from the input data such as the semantics within
sentences.  Still we do not fully understand how brain maps, and their topological organization,
relate to inferential processes like predictive learning, and how these biological inferential
dynamics emerged out of evolutionary processes.

Epsilon Machines (eMs) are the unique, minimal and lowest computational level models
that can optimally predict a set of data or natural process. More directly, eMs group together past
states that predict future states and do so using a reversal process that retrodicts the past and a
forward process that predicts future states based on groupings of pasts. Because the eM can make
predictions about future observations given past observations, for our purposes here, eMs are a
way of building causal inferences, or at least an exemplar of the basics of how causal mappings
can be formed. In being the lowest computational power and the most minimal model, they also
align to biological constraint optimization such as using the most minimal amount of resources
while still achieving predictive learning.
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Since the self-organizing map (SOM) is a “pattern classifier” in which the responsiveness
of certain cells/nodes are grouped as subsets that correspond with a discrete class of patterns, the
resemblance to epsilon Machines (eMs) already intrigues analysis. Could a similar mechanism in
the SOM be applied to induce a process that generates eMs from data, in a more unsupervised
manner than the eM reconstruction algorithm?

Part I: Measuring the Organization in Self-Organizing Maps (SOMs)

Motivation
Firstly is to measure how Shannon information changes in the initial and converged

learning epochs of the SOM, to understand the dynamics of information processing as the SOM
learns. We will consider the SOM as a channel and look at channel capacity. This means that
instead of a stream of an alphabet through a channel we are looking at a stream of the nodes that
have become the “best matching unit.” SOMs use both competitive learning (best-matching unit
wins) and collaborative learning (neighborhood radius function).

In thinking about the SOM as a channel we also need to consider the neighborhood radius
function, which updates the closest neighbors of the best matching unit with a parameterized step
size and decay amount. The channel capacity will be very different when we change the amount
of collaboration and competition via the radius factor. With the neighborhood radius function the
‘channel’ will become more complex- which is to say different probabilities are at play.
Understanding the information architecture of these two tradeoffs (competition/cooperation) is
already profound in the sense that these are information-architectural dynamics which can be
found biologically, both among neuronal populations as well as in evolutionary population
dynamics. The shared presence of these dynamics suggest a possible information-process that is
a signature of self-similarity contained within these two nested and strikingly innovative natural
processes.

To be followed up in future studies, we will suggest ways to look at the structures of
information that arise out of the separate competitive/cooperative learning dynamics by
analyzing how the entropy changes as you change the neighborhood radius function in the map.
This neighborhood radius function could be modeled as a control parameter in a dynamical
system- to consider spaces of dynamical systems and what kinds might be candidates for the
emergence of eMs out of naturally organizing systems. Perhaps competitive vs. collaborative
learning are each a kind of dynamical system whose interaction organizes information and
complexity. Perhaps competitive and cooperative dynamics sustain a kind of ‘edge of chaos’
criticality that is necessary for learning in neural networks more generally1 and for learning
processes with information in natural systems (speculation). For now let us return to the channel
capacity of the self-organizing map. We will use the Even process in the input and the Faircoin in
the initial weights, so that in theory, the SOM will need to add a state to be able to adequately

1 See “Deep Information Propagtion”
https://www.semanticscholar.org/paper/Deep-Information-Propagation-Schoenholz-Gilmer/4fdc7df2c7371
41a1bf5aec27a438b77d01f8af0
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map the inputs.  By thinking of the SOM as an information channel we can measure the
equivalency, ambiguity and channel capacity and see how this changes over learning epochs with
different neighborhood parameters.

(a) Initial Channel Capacity
1. generate a random set of binary values, this “randomness” will specifically be generated

out of an already known eM process, the Even Process, so that the information measures
are known.

2. initialize a one dimension SOM with 5 nodes, and set their weights with another version
of known randomness, the Fair Coin Process.

Channel Capacity at Initial State:
a. To figure out a probability distribution we need for each chosen learning epoch:

i. Probability of  activation of a node:

Plearning epoch (map|input)

Note: I believe here the P(Y|X) will be the same as P(X|Y)? Also for the neighborhood radius,
adjacent probabilities are set to 0.5 but this could be set differently, see technical limitations.
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ii. Here is the equivocation H[Y∣X], ambiguity: H[X∣Y], and mutual
information I[X:Y] for initial state (learning epoch 0) with no
neighborhood radius. In this case we use the activated node probability
divided by the total number of activated nodes, which was 14 out of the 25
total samples, the rest being 0.

Interpretation:  The translated probabilities into dit is possibly incorrect (see discussion: technical
limitations, for details on this). However here it could be that things are still noisy/disorganized,
there is high ambiguity and equivocation, but there is some mutual information between the
input and the mapping because the weights are dependent on the inputs and are likely to
activate/update as a function of the input. These probabilities assume there is no neighborhood
radius function.

Channel Capacity at convergence

a. Channel capacity at convergence (epoch 10) without and then with a neighborhood
parameter:
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Summary Interpretation

The mutual information channel capacity gets closer to one in the converged state, so the
organization of the map contributes to the mutual information (I0 = 0.5, and I10= 0.89). However,
the neighborhood radius is a bit confusing, it definitely contributes to more uncertainty both in
the increase of equivocation and ambiguity, this increase in uncertainty and decrease in mutual
information (and channel capacity) is true of both the initial state and the converged state.

Part II: Extending the Self-Organizing Map for the reversal Process (SOeM)

We now consider a way that might automate the process of eM reconstruction, using
principles inspired by the Self-Organizing Map. The self-organizing map can be thought of as a
casual state map, although there are questions about how to define the boundary or the partition
of each cluster. Analogously, the clustering is also a subgrouping of the inputs according to
similarity, and this similarity metric can be thought of as a probability of leading to that area
being “activated,” which is like a grouping of casual states. In our case we want to extend the
SOM map to reconstruct eMs, which means the SOM needs a reversal process. This means the
SOM needs to generate a predicted output (as if it has created a futureMorph), then it needs to



Self Organization and eMachines

compare this output to the pastMorphs (like a reversal process). Here we do this comparison
using the same SOM euclidean distance calculation between the input and output, but of the set
of causal states instead of the input data to the map. Then the weights of the generated output
map are adjusted until the unique best fitting eM is found. Here is a visualization of the
architecture described:

Future studies will pseudocode and implement this architecture to see if this process can generate
eMs in an unsupervised way from input data.

Part III: Discussion

Technical Limitations

In part I, the measurement of channel capacity, there is still ‘conceptual hygiene’ to do.
Particularly there are some confounds about how spatial location is involved in the calculation of
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probability distributions presented here. Further general problems due to weak experience with
probability theory: when looking at the initial probability curve image with the neighborhood
radius parameter set to 1 (see below), the curves for each letter, drawn intuitively, imply that the
probability list for those letters should be different because of their spatial location or index
location, but for some reason all of these are set the same numerically:

Here, the distributions c, d and e should look different as the
curves imply because of their spatial/index location, but they are
set to be the same event probabilities of activation because they
are numerically the same. This is in the case where the
neighborhood function is active.

Secondly, the summation of the probabilities could be different, should the total single input X1-5

to total map Y sum to one (right), or should it be average over the total of 5 nodes (left)?  Images
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to explain this: vs.

Further probability issues, I had to convert the probabilities derived in the probability
distribution images to meet the requirements for dit to work, namely summing to one in the
probabilities of the events, see below (left) we have the probabilities literally inputted for each
alphabet event, and (right) we have a conversion/normalization of those probabilities so that the
total events sum to one. Otherwise dit gives a “maximum recursion depth” warning. Hopefully
despite the alterations to normalize, the underlying shape of the distribution is preserved (?).

Another aspect, as shown below, is that if we change how we input the alphabet our
measurements may come out very different. If we reduce the input vector only to its binary
alphabet we are changing a lot.
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Input Vector coded as: a, b, c, d, e Input Vector coded as: a, b for 0 or 1

vs
This one is more true to the alphabet. This one is more minimal?

In future studies there would be more learning epochs measured, so that there could be a
nice plotted line graph of the channel capacity as the learning epochs progress through time.
Here we only show the initial state and the hypothetical “converged” end state, typically reached
after about 10 learning epochs. This was due to time and programming limitations. However this
may be better because this allows the methodologies to be corrected before fine tuning for each
epoch.

Lastly,  does a probability distribution over the best matching units count as “what is
being communicated” across the channel? This does make the most sense as the weights change
for the best matching units, and they are the main mechanism which allows the map to organize.
However, how would this capture the spatial organization as a part of what is “being
communicated” by the channel as a stream of best matching units. They sort of encode their
spatial location because they are associated with a node which has an index to a location and a
relationship with other nodes at least when the neighborhood radius is active, but is the spatial
aspect showing up at all in our measure of channel capacity? Having a more “spatially extended”
information measure, or just one that accounts for geometric relationships would be interesting
for the questions addressed.

Biological Plausibility

There are many reasons why the SOMs explicitly have analogies in biology, and one can
read any of Kohonen's writings to see why there is plausibility. But what about the eMs? And
how could this all play out on the 2D (but potentially multi-dimensional) surface of the cortex?
One possible answer is that there are these areas of the cortex which are known to do mirroring
of the topological representation of another area. 2 These mirror reversal representations (not to
be confused with mirror neurons) are theorized to be useful to sensory integration across two or
more modalities for example because for example, in certain species such as the Short-Tailed

2 Reiner Schulz, James A. Reggia; Mirror Symmetric Topographic Maps Can Arise from Activity-Dependent
Synaptic Changes. Neural Comput 2005; 17 (5): 1059–1083. doi: https://doi.org/10.1162/0899766053491904

https://doi.org/10.1162/0899766053491904
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Possum, the motor cortex which sends signals out, mirrors the topographic representation of
somatosensory cortex, which senses signals coming in. Examples of this are also in the visual
cortex of certain species. Speculatively, mirror reversal symmetries on the cortex, not only for
using the same word reversal, might involve a computational process that is similar to a reversal
process to achieve perhaps more localized predictive learning. If so this would be a striking
example of complex predictive computations that can happen on one layer, the surface of the
cortex which, although it does have lateral recurrent connectivity, is still less involved than the
convolutional layered hierarchies used in Deep Learning for example.

Conceptual Significance

Understanding the information processing in self-organizing processes (part I), as well as
the question of how causal inference capacities could emerge from evolutionary dynamics (sort
of part II), stems from a deeper philosophical inquiry. On the one hand this would allow us to
understand ourselves and how our thinking got to be as it is, as humans with a word for Turing
machines and beyond, with context-free grammars and symbolic logic. Understanding how we
came to be this way is a compelling question and understanding how brains, which can do causal
inference, emerged out of ultimately physical laws is also contained in this question. But
importantly, is the shift in our understanding of information processing that is not limited to
humans and not limited to nervous tissues.  By measuring and conceptualizing information
architectures and their dynamics we might come to understand better what the limits, resources
and constraints are of natural processes that can generate inferences in the world, such that we
might be able to prove that an entity such a slime mold, who is single-celled, can have (or not)
the information architectures capable of inferential reasoning. In other words, by understanding
the architectures of information that facilitate inference we can capture more general, and likely
much more universal, principles of learning and intelligence. This points to further potentials
like biological/organic computing.

If we consider representing a set of eMs topographically using the same self-organizing
process, the resultant map would be a space of possible eMs. Not to get confusing but this would
be a map of maps, where the more similar eMs, similar being a topological metric and number of
states etc, are clustered together. As new incoming data is processed there is more likelihood of
activating a certain eM as the best fit. This would essentially be like Bayesian structural
inference, but with a topological organization. The question here would be again, is there any
benefit to topologically organizing the space of possible best fitting eMs? Does spatial topology
contribute something, speed, efficiency of likelihoods, to inferential processes? If it does, that
implies that certain kinds of spatially extended systems, with maybe specifically kinds of
topological organization, are more prone or have more capacity to do inferential learning.

While this project is motivated by computational questions about the topological
organization of neural tissue in the cortex of brains primarily, it could also extend to other
systems because of its level of abstraction. By doing so it could expand the bounds of what can
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be considered “thinking” and what is necessary to be a “thinking” entity. Perhaps one connected
layer is enough, perhaps a single cell is enough complexity to “dream of electric sheep.” The
question changes from: what does the topological organization do for inferential “affordances”3-
to what is the minimal information and spatial organization needed for inference in general. How
is the slime mold organizing differently than sand, than populations of neurons? If we can say
something like “everything computes” and the present moment is a channel between the past and
the future, what would it mean for things to “infer”, which is to form groupings of the past that
represent possible futures? When a redwood tree somehow epigenetically encodes information
about the weather responses it experienced over its lifetime into its seeds via the germline in such
a way that the next generation of redwoods becomes more prepared for drought, is there a
dynamics of predictive inference that is emergent there? In what ways could inference, or
groupings of causal states (eMs), be a general kind of emergent property that plays out in
physical systems not limited to nervous tissues?

3 Gibson, James J. "The theory of affordances." Hilldale, USA 1.2 (1977): 67-82.


