Measuring the Organization in
Self-Organizing Perceptual Maps

Jules Litman-Cleper Physics 256B, Spring 2022



Broad Inspiration: How do levels of complexity emerge in nature

Evolution: Emergence of DNA from sou

= il

ZI OO (S
e

o7 5 =

N

S

UGN

%—'@a"’/ ZH)
e

SHGR

Encoding of
information

Ribosomes

Mitochondrion
Golgi body

ssssss

As far as the architecture of information processing is concerned, these questions for

Cognition: Emergence of cognition(inference,

~ learning, language) from perception

Encoding of
information

This is a

butterfly

natural language have direct analogues in adaptation, evolution, and even in the
development of scientific theories [70]. - Crutchfield, Calculi of Emergence



All mammals have a partitioned neocortex, partitions are called cortical fields
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How do diverse cortical regions develop?
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Both inherited genetic factors and activity-dependent sensory factors organize information in such a
way as to produce adult brain phenotypes.



, how are they defined?
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Structures within cortical fields: Topography and Topology
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Within cortical fields Topography and Topology

Primary auditory cortex




Within cortical fields Topography and Topology

Cortical representation of echo delay time in Al
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Short-tailed Bat (C perspicillata) (Hagemann, 2009)



Measures for Multi-species comparison of cortical fields:

1. Cortical field areas
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Ethological behaviors shape encoded feature spaces
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Fig.6 Schematic illustration of a dolphin’s echolocation system in action.
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Complex features have also been discovered to have topological
organization in multimodal regions of the cortex

The fusiform face area: a cortical region specialized for the
perception of faces
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How do complex feature spaces organize?

How many feature spaces does there really need to be for
cognition?

How could new feature spaces come about?



Self Organizing maps

1.  What are self-organizing maps: Teuvo Kohonen, 1982
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Fig. 4. Weight vectors during the ordering process, one-
dimensional array.



Self Organizing maps

What are self-organizing maps

1.

SizeX

input vector

F1GURE 3.3: A Kohonen model with the BMU in yellow, the layers

inside the neighbourhood radius in pink and purple, and the nodes

outside in blue.

(Sarkar, 2018)



Hopes for modelling with an SOM
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Space of causal correlations between maps with a ‘saliency’ rule?

Geometric constraint to predict complex
feature spaces between primary fiélds



Color version of self-organized map

Each node location (x, y) has a color value (r, g, b) from 0-255




Various Stumbling blocks: probability distribution while updating?

How to get conditional distribution Pr(Y | X)
between input and output processes?

@ 1/255 1/255 1/255

How to find probability of a node being a BMU at
initialization versus given neighboring nodes? O

O
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equivocation H[Y | X]
ambiguity: H[X|Y]
organization/structure ?
increase in organization of
information might not
change entropy of
underlying information?
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There are 3000 random colors in the input
source, so there are 3000 x (255, 255, 255) =
49744125000, so the initially its a uniform
probability distribution of 1/49744125000
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distribution
changing for each
epoch?



Color version of self-organized map

Input SOM




Defining channel capacity for a self-organized map

Communication channel from Input “Information Source” to “Output” SOM Process, BMUs as output (Y)
Build a Distribution that roughly corresponds

Source Entropy: H(X)

Class: Distribution
For x in X
Each initial input H(x) = 1.58

Alphabet: ('b','g', 'r') for all rvs

Base: linear
There are 25 random colors in the
input source, so there are 25 x
(255, 255, 255) = 414534375 Quicoms Lenght- .
possible states, so the probability
is 1/414534375

Outcome Class: str

Class: Distribution
Initial Output Entropy: H(Y) Alphabet: (X)), (1''2,'3, ', 's), (), (1,2, '3, '4}'S)
Base: linear

Outcome Class: str

overall output H(Y) = 4.64

Outcome Lenght: 4

Uncertainty about which location will be the
Best matching unit is initially 4.64 (?)



Defining channel capacity for a self-organized map

Communication channel from Input “Information Source” to “Output” SOM Process, BMUs as output (Y)
Build a Distribution that roughly corresponds

Source Entropy: H(X)

Class: Distribution
For xin X

Each initial input H(x) = 1.58

Alphabet: ('b','g', 'r') for all rvs

Base: linear
There are 25 random colors in the
input source, so there are 25 x
(255, 255, 255) = 414534375 Quicoms Lenght- .
possible states, so the probability
is 1/414534375

Outcome Class: str

Class: Distribution

Initial Output Entropy: H(Y) Alphabet: ((A''BY). (1 ‘2" '3" ‘4" '6))

Base: linear

overall output H(Y) = 3.32 Outcome Class: str

Uncertainty about which location will be the [kt 2
Best matching unit is initially 3.327)




Defining channel capacity for a self-organized map: Next steps

How to get correct probability distribution of the SOM as it is being trained, and after training:

1.  Get the correct probability distribution empirically:
a. Keep track of nodes
b. count how many times the node becomes a BMU
c. counts are a sampling probability distribution, use to calculate H(Y)

2. There should be obvious dimensionality reduction properties in the change in conditional entropy

a. How many input vectors map to a 2D output: H( Input vectors | x,y ) and H(x,y | Input
vectors)

3. Try not using colors, and instead use eMs to generate binary strings that have known properties,
then test classification with an SOM.

4. s there a way to jump model classes with SOMs, such as by iterating an SOM so that outputs
become inputs (correlations of correlations)?



Understand information architectures of feature selectivity:

How do topological feature maps emerge (evolutionarily and statistically)

Are there constraints to the amount or type of feature spaces that can exist
(dimensionality)?

How do completely new feature spaces come about?

How do feature maps relate to generalization capacities in cognition
(inference, learning, flexible behaviors)?



Thank you James Crutchfield, Mikhael Seeman and the class of Physics 256B, Spring 2022

jlitmancleper@ucdavis.edu



