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A simple evolutionary system is examined. Building off of [6], we investigate theinformation-theoretic properties of a "Royal Road" Genetic Algorithm that optimizesfor the greatest number of length-K blocks of 1s in a binary string. By measuringthe statistical complexity and entropy rate of the fittest bit string at each generation,we find that not all epochs are created equal, with some periods of stability duringthe underlying evolutionary process having markedly different informational propertiesthat may hint at specific trajectories and even causal explanations not visible fromobserving the population’s overall fitness alone.

1 Introduction

1.1 BackgroundThe reader is expected to be familiar with the basics of computational mechanics, presented incompact form in [1] and [5]. In this paper, our main tools will be the quantities Cµ, the statisticalcomplexity, and hµ(L), the entropy rate with a history of length L. hµ (as implemented in [4])is defined as:
HX(k) = ⟨hX,i(k)⟩i
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Representing the "entropy density", or the rate at which the entropy increases as the historylength increases. We are not taking the infinite limit here, but instead setting the maximumhistory to the length of the blocks we are trying to match in the GA.
Cµ is defined as:
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Cµ(R) ≡ H[R]= −
∑
ρ∈R

P(R = ρ) log2 P(R = ρ),
Where R is the class of a process’ causal states (this class is minimally complex and maximallypredictive of the process, as shown in the references above). It measures the uncertainty inrepresentation of the process that generated the observed data separate from the uncertaintyin the data itself, and thus reflects the amount of memory a process uses to generate symbols.

2 Methods

We used the same initial setup as [6]: A population of binary strings of length L = N ×K, where
K is the length of a block and N is the number of blocks. We calculate fitness according tothe number of matching blocks, and select randomly from the population to create the nextgeneration, weighted according to the fitness. We also subject each bit in the string to aprobability q of flipping.The subsequent portion of our analysis consisted of the following steps: 1. calculate andsave the best-fit individual from each generation1, 2. Infer a unifilar Hidden Markov Modelfor each fittest individual over a prior (uniform) distribution of all 1-4 state unifilar HiddenMarkov Models2 [2], and calculate the statistical complexity for each individual. We calculatedthe entropy rate directly from the bitstrings instead of using HMMs to minimize possible noisefrom our inference method.
3 Results

To begin, the main figure from [6] was reproduced. It also serves as an important referencepoint to the following graphs, in order to see where in the progression of the population Cµand hµ undergo major changes.Although we used a run of 4500 iterations for this analysis, we capped our datasets for eachquantity at 2475. After this generation, hµ was exclusively zero. In addition, it was simply tootime-consuming to compute more iterations than this for Cµ, and visual observation of the datashowed that once the population matched 7 blocks, the series of best fit individuals got "stuck",unable to fixate further matched 1s that would enable it to match the final block. Perhaps withmore iterations it would have been possible to exit this epoch, but for brevity’s sake we havenot included it in this very preliminary analysis.
4 Discussion

We have a mechanistic "story" already in mind: mutation generally either is neutral to orharms the fitness of an individual, but if the mutation matches a block it drastically increasesthe individual’s fitness, leading to a ’founder effect’ where there are long periods of stasispunctuated by extremely rapid innovation as the new beneficial mutation becomes fixated
1it was also possible to use a randomly selected average individual, but we found that the best-fit individuals hadmore structure overall, making it easier to see trends over time.2in reality these were samples from a distribution over possible initial states and transition probabilities given themost likely inferred structure
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Figure 1: Displaying the Epochal nature of the Royal Road algorithm Main Run, reproducingFig. 1 of [6]. Params: N and K = 8, M = 500, q = 0.01, for 4500 iterations.

Figure 2: The statistical complexity of randomly sampled machines (i.e., start node andtransition probabilities) from the Maximum a. Posteriori Estimate of machinetopology, over the course of the run.
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Figure 3: The (finite maximum) entropy rate of a given bitstring at generation g , calculateddirectly from the bitstring without reference to a given ε-machine.
across the population. This is reflected by the findings in [6]: they find that the process hasstrong metastable points corresponding to the eigenvalues of (a linearized version of) thegeneration operator G = M ◦ S, where M and S are the mutation and selection operators,respectively, but that if it starts moving away from these metastable points, it will do soexponentially fast.We can recognize the epochs in the data we have gathered: the drastic drop in the varianceof Hµ(L) at around generation 1500 in Figure 3 corresponds with the huge increase in averagefitness seen in Figure 1– the biggest for the entire run– possibly suggesting a founder effectwhereby one sequence completely dominated the entire population. However, there seemedto be more going on:The variance of Figure 3 clearly increases starting from around the same point in the run,suggesting that the inference process was picking up on some kind of additional structure inthat particular sequence. Typically, processes where Cµ would be equal to zero were biasedcoins with a probability of getting a 1 that more or less coresponded to the population’s averagefitness. On visual observation, processes whose most likely topology were not biased coinsseemed much more strongly periodic to the naked eye, with fewer stray "ones" or "zeros"breaking up longer (or at least more regular) sequences. The collapse in hmu to a narrowband of values corresponding to the same period in which there is a larger frequency of
Cµ = 0 HMMs is interesting in this light. Also worth noting are the clear bands in the valuestaken on by hµ, in both Figure 3 and Figure 4.
Directions for Further Research

Our approach had many limitations, and many aspects of the present study could be extended.Ideally, the same analysis could be fully repeated using randomly sampled average individuals,and compared to the data from the fittest individuals. It would also be a useful sanity checkto invest the computational resources to replicate the steps described in the methods sectionusing much longer L values to give the inference process more to work with. Another possible
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Figure 4: Comparison of Cµ and Hµ across the entire run.
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exploration could be focus on the renewal times between fitness spikes, taking inspirationfrom [3]– and all of that is before even considering other evolutionary process and geneticalgorithms.
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