3a. Goal: What is your primary project goal? What you would like to learn?

I would like to see if internal cybernetic/control properties of a system (with
some level of agency, or at least a goal/purpose in the case of engineered systems)
are reflected in its intrinsic computational or information-processing capabilities,
and examine the relationship of those quantities to the agent’s fitness.

I was hoping to analyze and compare/contrast a variety of different systems:
various self-modifying software systems (such as Tierra and Avida, also see
[3] and [4])-- perhaps even neural networks or standard genetic programming
algorithms such as crossover-- all performing the same task, and compare various
information-theoretic properties (most ideally h, and C,,) that give some kind
of characterization to the process that produced whatever data is collected from
these systems, hopefully enabling inferences to be drawn about how these systems
work, both from a dynamical perspective (see [0]) and an intrinsic-computational
one.

3b. System: Describe how the dynamical system is nonlinear and time-dependent.
What’s the state space? What’s the dynamic? Why is the system behavior
interesting?

For each evolving program, the state space are all combinations of instructions
defined for the given framework that could be generated, valid or invalid, of any
length (probably up to a defined maximum). The exact dynamic will depend on
the language/system/algorithm in question, but should reflect that framework’s
unique path to convergence on an answer to the problem it was tasked with.
The system’s behavior is interesting because it is completely artificial, and
completely reflects its design (structure). Thus we are able to study how very
contrived, purposeful design decisions effect function over time in an evolutionary
setting. Since many of these systems are spin-offs and close variations of each
other (e.g. Cartesian Genetic Programming vs Self-Modifying Cartesian Genetic
Programming), it may even be possible to explore the effects of incredibly specific
differences.

3c. Dynamical properties: What dynamical properties are you going to investi-
gate?

There are many possibilities: the overall dynamical landscape in the form of
attractors, peaks and valleys, discontinuous events (bifurcations etc), as well as
speed of convergence to the correct answer for different problems.

3d. Intrinsic computation properties: What information processing properties
are you going to investigate?

Some more thought will be needed regarding methods and which specific frame-
works/languages/algorithms/etc to use (this will also affect 3¢ above). The ideal
case would be to attempt to construct an e-machine for the process (this may
be difficult or impossible), and figure out its entropy rate (h,), the statisti-
cal complexity (C,,). T am also curious if synchronization-related quantities

have a meaning in this context (considering they seem mostly to apply to pe-
riodic processes) and in what way they are related to the program’s speed of
convergence.

3e. Methods: What methods will you use? Why are they appropriate?

Methods are still up in the air-- I am planning on collecting an assortment
of algorithms with some sort of evolutionary component, all trying to solve
the same problem (...if possible). I would keep track of the program/code
generated at each time step, the framework’s accuracy at the task and other
relevant benchmarks (e.g., time and space performance). Hopefully this would be
enough data to fruitfully perform analyses yielding the quantities and qualities
mentioned in 3c. and 3d. Although a direct comparison to the “finitary soup”
of e-machines from [1] and [2] would not be possible directly, I could compare
the results of the analysis from 3d. to those two papers as an additional point of
reference.

3f. Hypothesis: What is your current guess as to what you will find?

Genuinely not sure. I am somewhat expecting that algorithms/frameworks
that incorporate more features associated with biological life, and that are
more open-ended, with fewer arbitrary restrictions (e.g. simulating mutation
using specific procedures), to have higher amounts of stored information and
information production. I can’t really conceptualize how this will relate to actual
task performance, but would love to find out.

3g. Steps: List the appropriate steps for your investigation; for example, read
literature, write simulator, do mathematical analysis, estimate properties from
simulation, write up report, and so on

1. Read literature

1. Background

1. review topics of this class (additionally also population dynamics
and anything else you recommend)

2. genetic algorithms (as well as any other framework/algorithm
types I choose to study)

3. cybernetics, population dynamics, early complexity research that
would help clarify and sharpen the background model of evolution
and how organisms “work” I am using to interpret the results of
this project

2. Understand each algorithm/framework I choose to study in depth-
- how it works, its exact output, requirements, etc, as well as its
purpose, design, and known mathematical properties

3. Look for directly related work that has already been done on topics
that are as similar as possible

1. note: so far have not seen this approach applied to self-modifying
code/software specifically

2. Design/adjust simulation and analysis in greater detail after thorough
literature review

3. Set up and run simulation and benchmarking pipeline

4. c. Analyze dynamical properties and d. analyze intrinsic computation
properties

5. Write report

3h. Time: Estimate how long each step will take. Can you complete the project
within one month?

If T was able to work on the project 8 hours a day for the whole month, chances
would be good that it would be finished in that time frame. As it currently
stands, it seems unlikely. 1, if some topics are eliminated and with skimming,
would probably take 1-2 weeks. 2 and 3 combined would probably take 2-3
weeks, each subsequent step also around 2 weeks.

I suspect that a careful choice of genetic algorithms and design simula-
tions/experiments could greatly reduce the amount of time that 3, 4, and 5
would take. Being able to build off of similar prior projects/literature would also
help (but so far I have not looked as much as I probably should have). T would
greatly appreciate suggestions on how to reduce the scope while still examining
the key issue at hand (how exactly self-modification/self-regulation affects the
dynamical and intrinsic-computing properties of a system).

[0] Jaeger J, Monk N. Bioattractors: dynamical systems theory and the
evolution of regulatory processes. J Physiol. 2014;592(11):2267-2281.
doi:10.1113 /jphysiol.2014.272385

[1] Olof Gornerup and J. P. Crutchfield, “Primordial Evolution in the Finitary
Process Soup”, Electronic Journal of Theoretical Physics 4:161 (2007) 297-311.
Reprinted in Physics of Emergence and Organization, Eds. I. Licata and A.
Sakaji, World Scientific (New Jersey, 2008) 297-311.

[2] Crutchfield James P and Goérnerup Olof 2006 Objects that make objects: the
population dynamics of structural complexityJ. R. Soc. Interface.3345-349

[3] Sadia Noreen, Shafaq Murtaza, M. Zubair Shafiq, and Muddassar
Farooq. 2009. Evolvable malware. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation (GECCO °09). As-
sociation for Computing Machinery, New York, NY, USA, 1569-1576.
DOT:https://doi.org/10.1145/1569901.1570111

[4] Williams, Lance. (2014). Self-Replicating Distributed Virtual Machines.
10.7551/978-0-262-32621-6-ch114.

[6] Lenski, R., Ofria, C., Pennock, R. et al. The evolutionary origin of complex
features. Nature 423, 139-144 (2003). https://doi.org/10.1038 /nature01568

