
Towards connecting AIxPhysics and
Computational Mechanics

Omar Aguilar

Abstract

In the past five years, theoretical physicists, working in areas as
diverse as biophysics and cosmology, have become increasingly inter-
ested in automating scientific discovery using modern machine learn-
ing (ML) methods, thereby establishing an interdisciplinary field known
as AIxPhysics. In particular, these efforts have focused on imple-
menting symbolic regression (SR) via ML algorithms, that is, infer-
ring closed-form models from data. Although the models obtained
from SR via ML are much more interpretable than those of a typi-
cal neural network, their generality is limited by the ad hoc nature
of SR via ML. A plausible way to overcome this obstacle is to incor-
porate techniques from Computational Mechanics (CompMech) that
are especially suited for measuring model complexity and separating
structure from noise. Conversely, SR via ML might benefit Comp-
Mech by presenting a system’s transition dynamic as a closed-form
model; hence, generating interest in pattern discovery [1] beyond the
complexity science community. Therefore, the purpose of the follow-
ing is to be a first step towards this exchange by surveying different
SR via ML methods, examining their limitations and proposing possi-
ble research intersections that can move CompMech closer to the goal
of automated theory building [2].

Contents

1 History 2

2 Symbolic Regression via Machine Learning 3
2.1 Symbolic Regression via Heuristics 3
2.2 Symbolic Regression via Genetic Algorithms 5
2.3 Symbolic Regression via Physics Metaphors 6
2.4 Symbolic Regression on Neural Networks 9

1

3 Limitations of SR via ML 11
3.1 Model complexity is not-well defined 11
3.2 Difficulty in inferring expressions from noisy data 12

4 Further work: Possible research intersections 12

5 Acknowledgements 13

6 References 13

1 History

By the time of Tycho Brahe’s death in 1601, he had collected the world’s
most accurate and comprehensive data on planetary orbits, which he passed
onto Johannes Kepler’s hands. After 4 years of toil and about 40 failed at-
tempts to fit the Mars data to different oval shapes, Kepler jump-started
modern astronomy by characterizing Mars’ orbit as an ellipse [3]. This was
the birth of symbolic regression: Discovering a compact symbolic expression
that accurately matches a given data set.

Three centuries and a half later, two schools of thought that automated
symbolic regression emerged: The cognitive and the complexity traditions.
The first one, inspired by cognitive psychology, consisted of developing
algorithms that resemble heuristics, mental shortcuts that humans use to
make decisions with limited effort [4]. The second one, based on dynam-
ical systems theory, reduced a chaotic dataset’s observed complexity to a
compact, algorithmic specification. Despite the successes of these two re-
search lines, it is only in the past few years that the problem of automating
symbolic regression has gained vast popularity [5].

Recently, ”mainstream” physicists, have become increasingly interested
in developing machine learning programs that automate symbolic regres-
sion using biological or physics metaphors. These programs are known as
machine scientists. Although they use some version of the concept of heuris-
tic, to our knowledge, none of them incorporate the achievements of the
complexity tradition [7]. This work is a first step towards filling that im-
portant gap.

2

2 Symbolic Regression via Machine Learning

2.1 Symbolic Regression via Heuristics

In the 1960s, artificial intelligence (AI) pioneers Herbert Simon and Allen
Newell put forward the idea that human problem solving is equivalent to
doing heuristic search through a problem space. Heuristic search consists of
iteratively applying operators to transform the state of a problem from its
starting state (in problem state space) to its goal state, guided by heuristics
that make search tractable [8].

In the 1970s, Pat Langley implemented and extended Herbert Simon’s
heuristic approach to the problem of scientific discovery. Langley devel-
oped a series of programs called Bacon that rediscovered laws from the
history of physics and chemistry. The program was named after Francis
Bacon, because Langley incorporated many of Bacon’s ideas on the nature
of scientific reasoning [4]. Here, we describe how the Bacon program redis-
covers Kepler’s Third Law.

Kepler’s Third Law
The cube of a planet’s distance from the Sun is proportional to the square of its
period

d3

p2 = c

where d is the distance, p is the period, and c is a constant.

Three Heuristics for discovering Kepler’s Third Law

1. If the values of a numerical term are constant, then infer that the term
always has that value.

2. If the values of two numerical terms increase together, then consider
their ratio.

3. If the values of one term increase as those of another decrease, then
consider their product.

Example: Recovering Kepler’s Third Law from moon data

1. Gather some data selecting different values for the nominal variable
(moon), obtaining the values of the numerical terms (d and p). Con-
sider 4 moons labeled A, B, C and D that each possess a period p and
a distance to the sun d

3

moon d p
A 5.67 1.77
B 8.67 3.57
C 14.00 7.16
D 24.67 16.69

2. Since the values of columns d and p increase together, we apply Heuris-
tic 2 and get d/p. We define Term-1 as d/p.

moon d p d/p
A 5.67 1.77 3.20
B 8.67 3.57 2.43
C 14.00 7.16 1.96
D 24.67 16.69 1.48

3. Since the values of column d increase as those of column d/p de-
crease, we apply Heuristic 3 and get d2/p. We define Term-2 as d2/p.

moon d p d/p d2/p
A 5.67 1.77 3.20 18.15
B 8.67 3.57 2.43 21.04
C 14.00 7.16 1.96 27.40
D 24.67 16.69 1.48 36.46

4. Since the values of column d2/p increase as those of column d/p
decrease, we apply Heuristic 3 and get d3/p2. We define Term-3 as
d3/p2, which is the product of Term-1 and Term-2.

moon d p d/p d2/p d3/p2

A 5.67 1.77 3.20 18.15 58.15
B 8.67 3.57 2.43 21.04 51.06
C 14.00 7.16 1.96 27.40 53.61
D 24.67 16.69 1.48 36.46 53.89

5. Apply Heuristic 1. The statement that Term-3 is constant across moons
is equivalent to Kepler’s Third Law [4].

4

2.2 Symbolic Regression via Genetic Algorithms

In the 1960s, John Holland invented genetic algorithms (GAs), a search op-
timization approach inspired by natural selection and genetic mutation.
GAs is a method that transforms a population of ”chromosomes” (e.g.,
strings of 1s and 0s) into a new population by combining ”natural selec-
tion” with ”genetic” operators such as crossover and mutation. Each chro-
mosome is made of ”genes” (e.g., bits), where each gene is an ocurrance of
a particular ”allele” (e.g., 0 or 1) [9]. Here, we provide more detail on each
of these operators.

Three operators of GAs

1. Selection operator: Chooses fitter chromosomes (e.g., strings) to be al-
lowed to reproduce

2. Crossover operator: Exchanges subparts of two chromosomes (e.g., sub-
parts of two strings), imitating biological recombination

3. Mutation operator: Randomly changes the allele values (e.g., 0 or 1) of
some locations in the chromosome [9]

Genetic programming (GP) is a special type of genetic algorithms (GA)
that represents ”chromosomes” as trees, rather than strings (See Figure.
1 (a)). GP is specially suited for representing subparts of mathematical
expressions. Thus, GP can be used as a tool for performing symbolic re-
gression on a population of mathematical expressions. Here we detail an
example of how to do symbolic regression via GP.

Genetic Programming Procedure for doing Symbolic Regression

1. Generate a population of N possible mathematical solutions to the
given problem with different fitness values

2. Select two individual solutions at random from current population

3. Use crossover and mutation to produce two new individual solu-
tions, which are assigned to the next generation (See Figures. 1 (b)
and (c))

4. Repeat steps 2 and 3 N/2 times to produce a new generation of N
mathematical solutions

5. Repeat step 1 to create the next generation [9]

5

Figure 1 (a): Equation
y = z + 2 sin(z) is de-
composed into its op-
erators and operands
and represented in tree
form. Sketches by Ko-
zou Sakai from Quanta
magazine [6]

Figure 1 (b): Operator
+ of equation y = z +
2 sin(z) is mutated into
operator −. New equa-
tion is y = z − 2 sin(z)

Figure 1 (c): Branch
2 sin(z) of equation y =
z + 2 sin(z) and branch
z of equation y = z +
5 are crossbred. New
equations are y = z + z
and y = 2 sin(z) + 5

2.3 Symbolic Regression via Physics Metaphors

In the past five years, there has been an increasing interest among physi-
cists on using modern machine learning methods for automating scientific
discovery. However, they have identified two main difficulties with using
modern neural networks for this purpose [10]:

1. All parts of the data are not generated by just one mechanism

2. Big models are neither interpretable nor generalizable

To address these difficulties, some physicists have decided to combine
information theory and physics metaphors. The AI Physicist, developed
by Tailin Wu and Max Tegmark, is the archetypical example of this trend
[10]. On the information side, Wu and Tegmark leverage the concept of
the description length of some data, which is the number of bits required to
describe such data. On the physics side, they re-define a theory T as the
2-tuple of a prediction function f and domain c where this function is valid
T = (f, c) and use four physics metaphors for finding such theories. Here,
we provide further detail:

Description lengths of different types of objects
Approximate forms of description lengths of integers, rational numbers,
real numbers, vectors and functions:

6

1. DL of natural number n: log2(n)

2. DL of integer number m: log2(1 + |m|)

3. DL of rational number q =
m
n

: log2[(1 + |m|)n]

4. DL of vector p: ∑i Ld(pi)

5. DL of function f (x; p): Ld(p) + k log2 n where n basis functions ap-
pear k times

Physics metaphors

1. Divide-and-Conquer: Fit small models one by one, and gradually orga-
nize them, instead of fitting a single big one to all the data

2. Occam’s Razor: Minimize the total description length of a theory (num-
ber of bits required to describe that theory)

3. Unification: Unify learned theories by introducing parameters

4. Life-long learning: Store learned theories in a theory hub and try them
on future problems [10]

Since the first two strategies are the least intuitive to understand, we
will focus on them:

Divide-and-Conquer
Consider an object moving in an environment divided in regions that are
each of them governed by different physical laws (See Figure 2).

Conventional neural networks would learn the trajectory of such object
by learning a function f mapping xt → yt by parameterizing f by some
parameter vector θ that is adjusted to minimize a loss:

L ≡ ∑
t

l[f (xt), yt]

where f (xt) is the predicted function, yt is the target, and l is some non-
negative distance function quantifying how far each prediction is from the
target, usually satisfying l(yt, yt) = 0. In contrast, the AI Physicist, employs

7

a Divide-and-Conquer approach that discovers many theories that special-
ize on different regions. Mathematically, the Divide-and-conquer approach
consists of minimizing the generalized-mean loss:

Lγ = ∑
t
(

1
M

M

∑
i=1

l[fi(xt), yt]
γ)

1
γ

When γ < 0, the loss Lγ will be dominated by whichever prediction func-
tion fi fits each data point best [10].

Figure 2: The environment in which a ball moves is
divided in four regions, governed by an harmonic
potential (upper left quadrant in yellow), a gravi-
tational field (lower left quadrant in red), an elec-
tromagnetic field (lower right quadrant in blue) and
walls (upper right quadrant in green) [10].

Occam’s Razor
The AI Physicist uses Occam’s Razor to turn theories into compact sym-
bolic theories. For example, the program converts y = 0.1 + x1.9999998 into

8

y = x2. More specifically, the AI Physicist mathematically implements Oc-
cam’s razor by applying the minimum description length (MDL) principle.
This procedure consists of minimizing the description length DL of some
theory T on a dataset D, which is given by:

DL(T , D) = DL(T) + ∑
t

DL(ut)

where DL(T) is the sum of the DLs of the numbers that specify the theory
T and ∑t DL(ut) is the sum of the prediction errors of our theory at time
step t [10].

2.4 Symbolic Regression on Neural Networks

Symbolic regression has the advantage of inferring models that are both
compact and generalizable. However, it has the disadvantage of scaling
exponentially with the number of input variables and operators. On the
other hand, conventional neural networks efficiently fit complicated mod-
els to high-dimensional datasets, but are black boxes that are difficult to
generalize and interpret. This begs the question, how can one harness the
strengths of both symbolic regression and neural networks? The key idea
of Miles Cranmer and his DeepMind collaborators was to train neural net-
works to model a dataset and then fit symbolic expressions to each part of
these neural networks.

Method for combining symbolic regression and neural networks

1. Create a neural network with a separable internal modular functions
so you have smaller latent spaces.1

• Choose Graph Networks (GNs) as they have inductive biases
that are optimal for learning models of interacting particles

• GNs are structured into three distinct modular functions whose
structure is similar to that of physics of interacting particles:

(a) Edge model ϕe: Maps pair of nodes to a message vector. For
the Newtonian dynamics example, this model is analogous
to a force on a particle due to another.

(b) Node model ϕv: Takes receiving node and summed mes-
sage vector to compute updated node. For the Newtonian

1A latent space is a representation of compressed data in which similar data points are
closer together in space

9

dynamics example, this model is analogous to the accelera-
tion on a particle.

(c) Global model ϕu: Aggregates all messages and updated nodes

2. Train these functions on each of the latent spaces

3. Approximate internal functions with symbolic regression.

4. Replace internal functions of neural networks with the symbolic ex-
pressions. You end up with symbolic model that is equivalent to neu-
ral network (See Figure 3).

Figure 3: Illustration of the internal structure of graph networks. The rough
equivalence between this architecture and physical frameworks allows us
to interpret learned formulas in terms of existing physics. [10].

This framework is used to rediscover Newtonian dynamics and to dis-
cover the overdensity of a dark matter halo from properties of halos nearby,
which is a completely novel property. Here, we show an illustration of
these procedures [11].

10

Figure 4: Illustration of procedure for rediscovering known spring law and
uknown dark matter overdensity equation [11].

3 Limitations of SR via ML

3.1 Model complexity is not-well defined

Machine scientists define the complexity of a model as an ad hoc function
of the number and the type of operators and operands used, which leads to
procedures for inferring optimal equations that are hard to systematize. For
example, Wu and Tegmark define the complexity of an expression as the
description length of different types of objects using approximate formulas
[10]. This definition requires us to insert a strong bias of what a ”type” is
and to trust rough measures of complexity (e.g., the description length of
a rational number m/n is DL(m/n) = log((1 + |m|)n)). In practice, these
crude measures of complexity lead researchers to be careless about calcula-
tional mistakes. For example, Udrescu and Tegmark calculate the complex-
ity of the classical kinetic energy as DL(m ∗ v ∗ v/2) = DL(2) + k log2 n =
log2 3+ 6 log2 4 ≈ 13.6 bits. According to their complexity definitions, since
1/2 is a rational number, the first term of the description length should be
log2((1 + |1|)2) = log2(4) = 2. However, they treat 1/2 as an integer and
compute log2(1 + |2|) = log2(3) = 1.58 bits [12]. Therefore, arbitrary and
crude measures of complexity lead to inefficient methods for inferring op-
timal equations.

Furthermore, arbitrary definitions of complexity are based on the ap-

11

parent complexity the modeler perceives, which is hard to generalize. For
instance, Cranmer and collaborators rely intuitively on the complexity that
they perceive some operators have. They weight the complexity of ∧, exp,
log, IF(, ,) as three times that of +, −, ∗, / because the authors perceive the
operators are ”more complex” [11]. Why not two or four times? They pro-
vide no explanation. One of the issues with this assumption is that choos-
ing weights arbitrarily leads to no solid reason for why a model should be
preferred with respect to another one. Furthermore, different weights may
be required for different types of problems. Thus, arbitrary definitions of
complexity may lead to good enough models, but their lack of rigour limits
their generality.

3.2 Difficulty in inferring expressions from noisy data

Machine scientists struggle with inferring equations when noisy data is
present. The Bayesian machine scientist is the cutting-edge machine sci-
entist for inferring non-linear differential equations when noise is present
and it still fails for high noise. For instance, the Bayesian machine scientist
struggles with high noise when recovering Rossler differential equations
[13]:

ẋ = −y − z + ϵx

ẏ = x + 0.2y + ϵy

ż = 0.2 + z(x − 5.7) + ϵz

where ϵ is a Gaussian random variable with σϵ = 1 (low-noise case) or
σϵ = 5 (high-noise case).

For the low-noise case σ = 1, the Bayesian machine scientist identifies
exactly ẋ, ẏ and ż. For the high-noise case σ = 5, the Bayesian machine
scientist identifies exactly ẋ, but neither ẏ nor ż. The most plausible models
are simplified versions of the true models for ẏ. That is, we get ẏ = x
instead of ẏ = x + 0.2y and ż = z(x − a0) instead of ż = 0.2+ z(x − 5.7). In
practice, the most plausible models are almost identical to the true ones. We
observe that the machine scientist automatically decreases the complexity
of the preferred models as the quality of data decreases [13].

4 Further work: Possible research intersections

How can SR via ML benefit CompMech? The answer is not self-evident
and the reason for this is that ϵ-machines provide the minimally predictive

12

causal states and their transition dynamic, which carry more predictive in-
formation than closed-form symbolic expressions. However, inferring a
closed-form symbolic expression that is (approximately) equivalent to the
transition dynamic can lead to interpretable models that non-complexity
physicists might find particularly useful for research in biophysics, dark
matter, etc. Thus, inspired by SR on NNs, we can apply SR to the transition
dynamic itself. Moreover, we can take the inspiration further by replacing
Graph Networks with local causal states, which are a physics-based unsu-
pervised learning approach for discovering and describing coherent struc-
tures [14]. A possible criticism of applying SR via ML to CompMech is that
it is not necessary as now there is an equivalence between Reproducing-
Kernel Hilbert Space ϵ-machines and stochastic differential equations [15].
However, the value of applying SR via ML lies on the fact that it can po-
tentially bridge the cognitive and complexity traditions. In summation, SR
via ML can aid CompMech to be more accessible to a wider audience of
physicists.

5 Acknowledgements

I would like to thank Jim P. Crutchfield and Mikhael Semaan for their guid-
ance and patience with me throughout the year. I feel incredibly lucky that
I could be part of the fascinating and welcoming UC Davis Complexity Sci-
ence community. I look forward to deepen my exploration of the intersec-
tion between SR via ML and Computational Mechanics and keep working
towards automated theory building.

6 References

References

[1] C. R. Shalizi and J. P. Crutchfield. Pattern Discovery and Computa-
tional Mechanics. arXiv preprint arXiv: cs/0001027, 2000.

[2] J. P. Crutchfield. The dreams of theory. WIRES Comp. Stat.,
6(March/April): 75–79, 2014.

[3] A. Koyré. The Astronomical Revolution: Copernicus-Kepler-Borelli.
Routledge, 2013

13

[4] P. Langley. Scientific Discovery: Computational Explorations of the Creative
Processes. MIT Press, Cambridge, Massachusetts, 1987

[5] J. P. Crutchfield and B. S. McNamara. Equations of motion from a data
series. Complex Systems, 1:417 – 452, 1987.

[6] C. Wood. Powerful ‘Machine Scientists’ Distill the Laws of Physics
From Raw Data. Quanra Magazine, 2022.

[7] W. La Cava et al. Contemporary Symbolic Regression Methods and
their Relative Performance. arXiv preprint arXiv:2107.14351v1, 2021.

[8] H. Simon and A. Newell. Human problem solving: The state of the
theory in 1970. American Psychologist, 26(2), 145–159, 1971.

[9] M. Mitchell. An introduction to Genetic Algorithms. MIT Press, 1999.

[10] T. Wu and M. Tegmark. Toward an AI Physicist for Unsupervised
Learning. arXiv preprint arXiv:1810.10525v4, 2019.

[11] M. Cranmer et al. Discovering Symbolic Models from Deep Learning
with Inductive Biases. arXiv preprint arXiv:2006.11287v2, 2020.

[12] S. M. Udrescu and M. Tegmark. AI Feynman 2.0: Pareto-optimal
symbolic regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782v2, 2020.

[13] R. Guimera et al. A Bayesian machine scientist to aid in the solution of
challenging scientific problems. Science Advances, 2020.

[14] A. Rupe and J.P. Crutchfield. A Local Causal States and Discrete Co-
herent Structures. arXiv preprint arXiv:1801.00515v1, 2018.

[15] N. Brodu and J.P. Crutchfield. Discovering Causal Structure
with Reproducing-Kernel Hilbert Space ϵ-Machines. arXiv preprint
arXiv:2011.14821v2, 2021.

14

