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Introduction 

Chaos has been found in many ecological models such as the nonlinear discrete population 

model (May 1976), three-species food chain model (Hastings and Powell 1991), and nutrient-

plankton community model (Huisman and Weissing 1999). However, the detection of chaos in 

natural community remains rare (Bjørnstad and Grenfell 2001). Solid evidence of chaos in nature 

includes chaotic dynamics of measle disease (Sugihara and May 1990), an insect population 

(Costantino et al. 1997), and a long-term experiment about plankton community (Benincà et al. 

2008). Calculating Lyapunov exponent from dynamical models or from long-term timeseries is 

the traditional method of detecting chaos (Hastings et al. 1993). A positive Lyapunov exponent is 

viewed as the hallmark of the existence of chaos.  

Furthermore, information theory shows that entropy rate of a dynamical model is equal to the 

sum of positive Lyapunov exponents (lecture note of computational mechanics). If a dynamical 

system possesses positive Lyapunov exponents, its entropy rate should also be positive. 

Therefore, there exists another possible method of detecting chaos ---- construct ɛ machine from 

time series ---- calculate entropy rate of the ɛ machine ---- detect chaos based on the value of 

entropy rate. The advantage of this method is that once we have a reliable ɛ machine, we can 

calculate many properties of the ɛ machine such as excess entropy (mutual information between 

the past and the future), and structural complexity. However, the difficulty of this method is that 

we have to find a workable way to partition time series that are observed from continuous 

systems in nature. This project explores different partitioning approaches: generating partition 

and arbitrary partition. To test if this method of detecting chaos works, as a first attempt, I use 

synthetic time series generated from a dynamical system which is known to be chaotic.  

Methods 

Dynamical system 

The chaotic dynamical system I study is a three-species food chain model (Hastings and Powell 

1991). This model includes three ordinary differential equations describing predation 

relationships among three species: species x is eaten by species y, and species y is eaten by 

species z (Eq. (1)). The nonlinearity of the model arises from the nonlinear functional response 

terms (i.e., f1(x) and f2(y) in Eqs. (1) and (2)).  
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Where t is time; x, y, and z are biomass of the three species; a1, a2, b1, b2, d1 and d2 are 

parameters, and f1(x) and f2(y) are non-linear functional response functions, which is likely the 

main origin of complex dynamics (Abrams and Roth 1994). It has been shown that this model 

exhibits complex dynamics, including stable equilibrium, chaotic attractors, and coexistence of 

multiple attractors when parameters vary within wide ranges. The dynamical behaviors are 

mostly sensitive to the variation of parameter b1.  

This model is numerically solved by the Runge-Kutta method in Matlab. I plot its bifurcation 

diagram over the parameter b1 to figure out the region with chaotic dynamics. Then I choose a 

set of parameter values which can generate chaotic time series. The parameter values are a1 = 5, 

a2 = 0.1, b1 = 3, b2 = 2, d1 = 0.4, d2 = 0.01. I also draw Poincaré map of the dynamical system for 

the variable x. Fortunately, the Poincaré map shows a nice nonlinear relationship, which allows 

me to fit the Poincaré map with a six-order polynomial regression, and then calculate the 

Lyapunov exponent of the Poincaré map. This Lyapunov exponent is further compared with 

entropy rate of the ɛ machine constructed from discrete time series.  

Generation of discrete time series and partitioning 

I employ two methods to generate discrete time series. The first method directly uses the data 

points on the Poincaré map. Because the Poincaré map shows a nice nonlinear relationship, I use 

generating partition to partition the discrete time series into 4 alphabets. The second method 

generates time series from the numerical solution of the dynamical model with an arbitrary 

output time step. Here, I use an output time step of 10. The partition of the time series is also 

arbitrary. I partition them into 2 alphabets, 3 alphabets, 4 alphabets, and 5 alphabets. The purpose 

here is to find which type of partitioning can generate the entropy rate this is closest to Lyapunov 

exponent of the Poincaré map. 

Construction of ɛ machine 

I try to construct ɛ machine using the Bayesian inference method. Since I have time series with 4 

and 5 alphabets, the Bayesian method to construct ɛ machine cannot run on my laptop. I end up 

constructing Markov chains and calculating entropy rate of these Markov chains. It is expected 

that entropy rate of Markov chain will be higher than entropy rate of ɛ machine since these 

Markov chains are not the minimal models representing dynamics of discrete time series.  

 



3 

 

Preliminary results 

Complex dynamics of the food chain model 

The bifurcation diagram of this model along the parameter b1 is shown in Figure 1a. Dynamics 

of this model changes dramatically when b1 surpasses the point 2.2 and the point 2.9. When b1 < 

2.2, the attractor is a fixed point; when b1 > 2.9, the attractor is chaotic; and between the two 

regions, the attractor can switch between cycles and chaos with a subtle variation in parameter 

b1. It seems that there are multiple attractors in this region. The chaotic attractor in the region 

b1 > 2.9 is like a tea cup, as shown in Figure 1b. The biological interpretation of this attractor is 

that when the abundance of top species (z) increases (the trajectory goes up along the body of the 

cup), the abundance of middle species (y, the prey of z) declines, and the abundance of bottom 

species (z, the prey of y) goes up. When the number of middle species y is too low, the top 

species z crashes suddenly from its peak (move from the peak to the handle of the cup) and then 

abundance of species y starts to increase, and abundance of x starts to decline (the trajectory 

moves from the handle back to the body of the cup).  

  

Figure 1  (a) Bifurcation diagram (left) and (b) chaotic attractor when b1 = 3.0 (right).  

Poincaré map and its Lyapunov exponent 

I obtained a Poincaré cross-section by placing a horizontal plane with z = 8.5 and cutting through 

the handle of the cup. The trajectory passes this cross-section about every 100 time-units (here 

the equations are non-dimensionalized and unitless). Surprisingly, the Poincaré cross-section is 

like a straight line (Fig. 2a). Poincaré map, a return map of variable x is thereby obtained (see 

Fig. 2b). The Poincaré map has two peaks and one valley. The six-order polynomial to fit these 
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points is given by Eq. (3). Lyapunov exponent of the Poincaré map calculated based on the fitted 

polynomial is 1.7132.  

9 6 5 4 3 2

1  10 (0.4257( ) 2.5335( ) +6.2766( ) 8.2859( ) +6.1477( ) 2.4307 +0.4001)n n n n n n nx x x x x x x+ = − − −      

                                                                                                                                                     (3) 

 

Figure 2  (a) Poincaré cross-section with z = 8.5 and (b) the Poincaré map of variable x.    

Discrete time series and partitioning 

As mentioned in the method, the first method to generate discrete time series is using points on 

the Poincaré map. I divided the range of x (Fig. 2b) into four regions using generating partition, 

that is partitioning at the peak and valley points: x < 0.9529, 0.9529 ≤ x < 0.9695, 0.9695 ≤ x < 

0.9764, and x ≥ 0.9764. Then, Markov chains with different numbers of states are constructed. 

For the second method, discrete time series of variable x (Fig. 3) is output from the dynamical 

model with an output time step of 10 (unitless). I then partition these points into 2 alphabets, 3 

alphabets, 4 alphabets, and 5 alphabets arbitrarily. The partition points randomly chosen are 

listed in Table 1.   

  

Figure 3.  Discrete time series (points) directly output from the dynamical model.  
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Table 2  Random partition points used to generate different numbers of alphabets 

Number of alphabets Partition points 

2 0.6 

3 0.5, 0.8 

4 0.4, 0.6, 0.8 

5 0.3, 0.5, 0.65, 0.8 

 

Entropy rate of Markov chains 

Firstly, for the alphabet words generated from the Poincaré map and using generating partition, 

entropy rates of Markov chains with 4-5 states are between 1.683 and 1.963, quite close to the 

Lyapunov exponents of the Poincaré map (1.7132). This result suggests that the first method of 

producing discrete timeseries works as long as a return map with clear nonlinear relationship 

(e.g., the Poincaré map) can be obtained from observation or synthetic data.  

Next, for the words generated by the second method using different numbers of alphabets (2, 3, 

4, 5), entropy rates of Markov chains with number of states varying between 2 and 8 are shown 

in Fig. 4. When using 2 and 3 alphabets, entropy rates of Markov chains are in general very low 

(< 1.1), much less than the Lyapunov exponents of the Poincaré map (1.7132). This result 

indicates that choosing a proper number of alphabets is likely a critical step towards estimating 

reliable entropy rate. With the increase in number of alphabets, entropy rates mostly increase as 

well. Unfortunately, on my computer, when alphabet is 4, the maximum number of Markov 

chain states I can run is 6, and when alphabet is 5, the maximum number of Markov chain states 

is 5. Although I could not run Markov chain with more states, it seems that entropy rates 

basically increase with the number of states of Markov chains. It is expected that when numbers 

of alphabets are 4 and 5, entropy rate can reach values higher than the Lyapunov exponents of 

the Poincaré map (the black line in Fig. 4) with the increasing number of Markov chain states.  

 

Figure 4  Entropy rate of Markov chains with different numbers of states for various partitions.  
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If I was able to construct ɛ machine and calculate its entropy rate, I would get a figure more 

complete and inspiring than Fig. 4: showing when entropy rate reaches its peak, and which peak 

of entropy rate is closer to Lyapunov exponent, much like the result shown in Strelioff and 

Crutchfield (2007). Such a figure would also allow me to decide if the second method of 

generating discrete time series and partitioning works, and to better understand how entropy rate 

is sensitive to number of alphabets and number of Markov chain states. This project is far from 

completion. It only represents a very first attempt to bridge the gap between continuous 

dynamical systems and computational mechanics. Computational mechanics looks promising in 

understanding complex systems, but there remains a great amount of work to be done to apply it 

to natural systems that include a large number of interacting components and plenty of 

observation/measurement noise.   
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