Detecting Chaos in Ecology

Junna Wang Graduate Group in Ecology 6/3/2021

Ecology: Environment > Organisms

Features of ecosystems

- Many components
- Complex interaction networks
- Vary in space and time
- •••

A Savanah ecosystem

Why is chaos possible in ecosystems?

Nonlinearity

For one species/population

Logistic map $x_{t+1} = r x_t (1-x_t)$

Growth rate (the slope of the curve) is density dependent

For multiple species – a community

Density of prey population

Species interaction is nonlinear

Some ecological models show chaotic dynamics under certain parameter ranges.

Does chaos exist in natural ecosystems?

Chaos in a long-term experiment with a plankton community

Elisa Benincà^{1,2}*, Jef Huisman¹*, Reinhard Heerkloss³, Klaus D. Jöhnk¹[†], Pedro Branco¹, Egbert H. Van Nes², Marten Scheffer² & Stephen P. Ellner⁴

Chaotic Dynamics in an Insect Population

R. F. Costantino, R. A. Desharnais,* J. M. Cushing, Brian Dennis

Overall, the detection of chaos remains rare in nature!

Species fluctuations sustained by a cyclic succession at the edge of chaos

Elisa Benincà^{a,1}, Bill Ballantine^b, Stephen P. Ellner^c, and Jef Huisman^{a,2}

Methods to detect chaos

- 1. Parameterize realistic dynamical models with observed data (most commonly used)
- 2. Calculate Lyapunov exponent directly from observed time series (Wolf, 1985)
- 3. Calculate entropy rate of the ϵ machine constructed from time series

The difficulty of $\boldsymbol{\epsilon}$ machine method

Strategy of partitioning and constructing $\boldsymbol{\epsilon}$ machine

Three species food chain model

1.5

2

2.5

3.5

parameter b1

Bifurcation diagram

4.5

functional response function.

(Hasting and Powell, 1991)

Detailed bifurcation structure

Poincare map

Lyapunov exponent = 1.7132

Entropy rate of Markov chain of 4 states: 1.683 5 states: 1.869 6 states: 1.963

Entropy rate of time series of arbitrary interval

Entropy rate of Markov Chain

Markov chain	2 states	3 states	4 states	5 states	6 states
2 Partitions	0.547	0.541	0.512	0.475	0.422
3 Partitions	0.855	0.754	0.677	0.603	0.571
4 partitions	0.99	0.90	0.868	0.932	1.235
5 partitions	1.097	1.008	1.095	1.476	out of memory

Interval of output time step = 10

Recall: Lyapunov exponent from Poincare map \approx 1.7132

Future work

- Construct reliable ε machine on supercomputer
- Try different partitions and ϵ machine of more states.

Thank you for your attention!