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1 Abstract
Classical random walks and Markov Chain methods have proved to be a powerful tool in developing
stochastic algorithms. They have also provided valuable insights in Physics, Biology, Economics
and Finance. Quantum analogs of the classical random walk, also known as the quantum walk,
are an important tool in developing quantum search algorithms such as the Grover’s algorithm.
Unlike their classical counterparts, particles performing Quantum walks can be in a superposition of
states. Other quantum effects such as entanglement and quantum statistics of the particles become
relevant when there are multiple quantum walkers which are of particular interest in studying many
body physics. In this project we study and compare classical random walk and quantum walk of
one particle and two particles. We evaluate the asymptotic probability distributions, evaluate the
Shannon Entropy for each of them and examine the role of the "coin" on these entropies. In
addition, we look at the correlations for non-interacting two particle quantum walks to examine
the role of entanglement in the case of Bosons and Fermions. Finally, we review hitting times for
the two to see how quantum walks provide speed ups to the existing search algorithms.

2 Introduction
Random walks as the name suggest is a sequence of random steps taken in some discrete or con-
tnious time. Here, we look at discrete time Random walks. Random walks are Markov Processes
as the next state only depends the previous state. Randomized algorithms based on random walks
and Markov chain methods have numerous applications in computer science, physics, biology and
economics. Particular uses of random walk in computer science include network embedding, recom-
mender system, link prediction, collaborative filtering, semi-supervised learning among others[7].
In physics they are used model random motions of molecules in liquids and gases(Brownian mo-
tion) to study diffusion, absorption and polymer formations. Self interacting Random walks also
have found applications in Quantum Field Theory[2].

Quantum walks are the non-trivial generalization of classical random walks. Due to the su-
perposition principle, a quantum walker follows all the possible paths simultaneously and displays
Quantum coherence which is where they differ from their classical counterparts. Propagation of
a single excitation in a crystal, energy transport during photosynthesis in plants and spreading
of quantum information on quantum networks can are modeled using quantum walks[4]. Quan-
tum Walks are also used in quantum search algorithms which promise speed ups to their classical
counterparts.

We begin by looking at classical random walk on a grid graph before looking at Markov Chains
which helps us a framework that helps us extend Random walks to any arbitrary graph. We then
proceed to discuss postulates of Quantum Mechanics which necessitate the modifications to the
classical random walk so that they are satisfied. We then proceed to look at Quantum walks of
a single particle on a 1D lattice graph and compare it to its classical counterpart. We also point
out some new features that we do not see in the classical random walk. After this we look at
two non-interacting particles quantum walk on a 1D lattice graph and study correlations for the
fermionic and bosonic case. Finally, we look at a simple search algorithm which shows us speedups
provided by a quantum walk search algorithm.
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3 Classical Random Walk
Random walk is a stochastic process, that describes a path that consists of a succession of random
steps on some mathematical space. The steps of the random walk are independent and identically
distributed random variables represented by {Xi}. The position of the particle, represented by χn
, after n-steps if the walk started in the initial state x0 is given as,

χn = (x0 +X1 +X2 + ....) +Xn (1)
χn = χn−1 +Xn (2)

We observe that even though {Xi} are independent random variables the positions χn are not.
The simplest random walk is random walk on a discrete 1D lattice such that the particle starts at
the position x0 = 0 and X1 = +1,−1. This random walk is also sometimes referred to as simple
random walk. For an unbiased random walk we have,

P(X1 = 1) =
1

2
(3)

P(X1 = −1) =
1

2
(4)

while for a biased walk we have ,

P(X1 = 1) = p (5)
P(X1 = −1) = 1− p (6)

The walk is said to be biased to the right if p > 1/2 and it is said to be biased to the left if
p < 1/2. This construction can be extended to higher dimensions. In case of a simple random
walk of dimension - D we have,

X1 = {±ê1,±ê2, ...,±êD} (7)

P(X1 = êd) =
1

2
(8)

P(X1 = −êd) =
1

2
(9)

Here, êd is a unit vector in the RD. Figure below shows simple random walk sequence in 1D and
2D.

(a) Simple Random Walk Sequence in 1D (b) Simple Random Walk Sequence in 2D

Figure 1: Simple Random walk sequences in different dimensions

3.1 Random Walk as a Markov Chain
Markov chains help us study random walks on a more general non-geometric setting. Random
walks on a d-regular graph G = (V,E) instead of the physical space can be studied using the
Markov chain formalism. Here V = {i} are the vertices and E = {(i, j)} are the edges of the graph
G. The simple random walk in 1D is random walk on a line and simple random walk in 2D is a
random walk on a square grid graph. The state space for a random walk is then simply the vertices
S = V = {i} of the graph. The random walk is then given by the transition matrix T of dimension
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n(S)×n(S) where, Tij or the elements of the matrix gives the probability of transition from vertex
i to vertex j such that

∑
j∈V Tij = 1. The transition matrix T preserves normalization and is

stochastic. The initial state is then represented by a vector- µ of length Rn(S). The state after
one step is then given as, µ(t = 1) = µT . The asymptotic probability distribution µ(t → ∞)π is
then simply the eigenvector of T corresponding to eigenvalue 1. Using Markov chains we can also
calculate the hitting time, which is an upperbound on the time taken to reach a marked vertex,
for an arbitrary graph. Hitting time is one of the quantities which helps us compare generic search
alogorithms based on classical and quantum walks.

3.1.1 1D Random walk

We give the Markov chain representation of a simple 1D random walk with periodic boundary
conditions as shown below.

Figure 2: Simple Random Walk Markov Chain

The state space for this chain is S = {0,±1,±2}. The transition matrix for this graph is given
as,

T =


0 p 0 0 1− p

1− p 0 p 0 0
0 1− p 0 p 0
0 0 1− p 0 p
p 0 0 1− p 0

 = T (L) + T (R) (10)

T (R) = p


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

T (L) = (1− p)


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (11)

The asymptotic probability distribution for the Markov chain when p = 1/2 is given by π ={
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

}
. This simple representation provides us a framework for extending the Random

Walk to the quantum systems. The probabilities are replaced with "coin operators" and the
transition matrix is replaced by a unitary operator.

Figure 3: Random Walk of infinite 1D Chain

We also use the construction above to study Random Walk on an infinite 1D lattice graph. The
state space is an open set S = {0,±1,±2...} in this case. The asymptotic probability distribution
for this system is a Gaussian distribution. The most probable state (or lattice point) is dependent
upon p or the bias of the "coin". If p > 1/2 then we see the walk is biased to the right while we
say it is biased to the left for p/2. The figure [4] shows the asymptotic distribution for infinite
Random walks with varying bias.
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Figure 4: Asymptotic distribution for infinite Random walks with varying bias.

3.1.2 Shannon Entropy of the Random walk

We calculate the entropy of the 1D random walk after a large number of steps as a function of the
bias of the walk. Shannon entropy is defined as, H(X) = −

∑
x∈X p(x) log p(x). In our case the

entropy is given as, p(x) is the probability of each state after t steps given by µ(t → infty). The
sum is over all states in S. We compare this entropy with the Shannon entropy of the quantum
walk that we look at later. We do this to see if it can be used as a single parameter to distinguish
the two without having to consider the entire probability distribution. The figure below shows
the values obtained. We see that the entropy decreases as the walk becomes more biased in one
direction compared to the other which is expected as it reduces uncertainty in the motion of the
random walker.

Figure 5: Entropy of 1D Random Walk for varying bias in the walk

3.1.3 Two non-interacting Random Walkers on a 1D Graph

We now proceed to extend our formalism to study two non-interacting random walkers on a 1D
Graph. The state space for a two particle Random walk is S = S1 ⊗ S2 where Si = V = {i}
represents the state of one of the random walkers. The transition matrix is then T = T1⊗T2, where
Ti is the transition matrix for a single random walker on a graph. The elements of the transition
matrix T gives us the probability of the system from state {{i1}, {i2}} to state {{j1}, {j2}}. The
matrix T can be now used to obtain the asymptotic joint probability distribution Π ∈ Rn(S)×Rn(S).
Since, the particles are non-interacting this is simply direct product of the asymptotic probability
distribution of the single random walkers that we had obtained before i.e, Π = π ⊗ π. The
correlation is also 0 for the two classical non-interacting random walkers.

We will now move onto extending the ideas developed earlier to study Quantum walks involving
one and two particles.
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4 Quantum Walk
Quantum Walk differs from classical Random walk because the quantum walker must obey postu-
lates of Quantum Mechanics that are stated below. We explore the variations in the probability
distributions of a random walker as a result of these postulates.

1. The set of all quantum states is contained in the Hilbert space which is complete. Quantum
states are represented by vectors of complex number often represented by kets-{|ψ〉} that lie
in the Hilbert space. These states in some ways are analogous to the Markov states that we
defined earlier.

2. The basis quantum states of the Hilbert space, given by {|i〉} are orthonormal to each other.

〈i|j〉 = δij (12)

Any superpositions of these orthonormal basis states also lies in the Hilbert space. This
distinguishes the Hilbert space from the S that we had defined earlier for the classical system.

3. Physical observables in quantum mechanics are represented by operators. Any measurement
of an observable gives us an eigenvalue which is the classical physical quantity corresponding
to the operator.

4. Any measurement of the quantum system alters the system. The state right after measure-
ment is the normalized eigenstate of the eigenvalue that was observed. Thus, if we make
a measurement of the quantum walker at every step, we would end up with the classical
random walk.

5. The time evolution of a quantum system is given by a unitary operator. A unitary operator
preserves that normalization of a quantum state.

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (13)∑
i

|〈i|ψ(t0)〉|2 = 1 =
∑
i

|〈i|ψ(t)〉|2 (14)

Thus, to observe the "quantum" nature of a random walk the transition matrix T must be
replaced by a Unitary operator that gives the Quantum walk.

4.1 Single Particle Quantum Walk on 1D Graph
4.1.1 "Quantizing" the Random Walk - Unitary Operator construction

We first construct the unitary operator for quantum walk on discrete 1D lattice graph. The
construction used here is the specific QuantumMarkov Chain construction for a simple 1D quantum
walk. The unitary operator for the simple unbiased 1D quantum walk is given as,

U = (I ⊗H) · S (15)

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
(16)

S = |R〉 〈R| ⊗
∑
j

|j + 1〉 〈j|+ |R〉 〈R| ⊗
∑
j

|j〉 〈j − 1| (17)

The probability of transition is given by H also called as the coin operator. The unbiased coin
operator is the Hadamard operator shown above. The coin operator is different from its classical
analog as it allows for the superposition of states. The S operator serves to shift the operator.
We observe that the unitary operator has dimensions C2n ×C2n, where n is the number of lattice
points or vertices in our 1D graph. This is differs from 1D random walk on a graph with n sites
where the transition matrix has dimensions Rn × Rn.

The initial state is defined on a C2n space. It is given as |j〉 |d〉. The first ket |j〉 is defined
on Cn space which is similar to µ which is defined on Rn. This ket indicates the lattice point
of the graph. The second ket |d〉 is defined on C2 space. It lies in the Hilbert space of the coin
operator. Physically, it corresponds to the initial direction of quantum walker. The kets |L〉 and
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|R〉 indicate the direction left and right respectively. Since, quantum objects propagate as waves
we have to contend with the direction of the initial state of the walker as well. This nature results
in interference upon propagation. In figure below we compare the first few steps of classical and
quantum walks.

Figure 6: Steps of Classical Random walk (left) and Quantum Walk (right). The most probable
position of a classical walk is in the center while it is towards the left for quantum walk in this case.
The walks can be visualized using a galton board for classical random walks and optical Galton
board for a quantum walk.[3]

4.1.2 Asymptotic Probability Distribution - Spectrum of Single Particle Quantum
Walk

The asymptotic probability distribution of a quantum walk is determined by finding the eigenvalues
of the unitary operator with absolute value 1. All the eigenvalues of the unitary operator are of
the form,

U |λ〉 = eiλ |λ〉 (18)

The above expression implies that there would be multiple eigenstates (asymptotic probability
distributions) as there are multiple eigenvalues with absolute value 1. The number of degenerate
eigenstates is 2n with n being the number of sites in the system. The shift operator S has n eigen-
states with eigenvalues that have absolute value 1 while the coin operator has 2 such eigenstates.
In order to find these eigenstates we change to the momentum basis to diagonalize S. We then
solve the block diagonalized matrix for the eigenstates. Since, the coin operator has 2 eigenstates,
each value of k in the momenum space has two possible eigenstates. Physically, the two bands of
eigenvalues correspond to a eigenstate that moves to the left and right. For a general coin operator
as indicated below, we calculate the eigenvalues as outlined in [5].

H =

[ √
Reiα

√
1−Re−iβ

−
√

1−Reiβ
√
Re−iα

]
(19)

R ∈ [0, 1] (20)
α, β ∈ [0, 1] (21)

The eigenvalues of the unitary operator are given below. The figure shows the two bands of
eigenvalues for different coin parameters R.

eiλ = eiβ [
√
R cos(α− 2πk/N)± i

√
1−R cos2(α− 2πk/N)] (22)

The corresponding eigenstates are given as,

|λ〉 = s |k〉 [|L〉 − h00(λ, k)

h01(k)
|R〉] + e(iω)s′ |k′〉 [|0〉 − h00(λ, k′)

h01(k′)
|R〉] (23)

k′ = −k +
αn

π
(24)

h00 =
√
Rei(α+β−

2πk
n ) − eiλ (25)

h10 = −
√

1−Rei(2β+ 2πk
n ) (26)

h01 =
√

1−Re−i 2πkn (27)

h11 =
√
Re−i(−α−β−

2πk
n ) − eiλ (28)
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Figure 7: Eigenvalue λ of the unitary operator as a function of k/n where k is a value in the
momentum lattice of 1D lattice graph with n sites.The different bands correspond to different
values of R.

Figure 8: Asymptotic states for the unbiased classical and quantum walk starting at site |0〉.
Direction of the initial state determines asymptotic state attained for quantum walk.

s, s′, ω are free parameters that are chosen such to give us the two orthonormal eigenstates corre-
sponding to a single value of k. The figure below shows numerically calculated eigenstates for the
Hadamard coin operator.

Comparing with the classical Random walk case we make two obervations.

1. The asymptotic state is dependent on the direction of the initial state even if the initial
positions states are the same.

2. The quantum walker drifts away from the center while the classical random walker is continues
to remain around the center. This property is the reason why search algorithms based on
quantum walk are faster than their classical counterparts.

4.1.3 Role of the coin operator

The figure below shows numerically calculated eigenstates for a biased coin operator and compares
it to its classical counterparts. Comparing with the classical Random walk case we make two
obervations.

1. The asymptotic state is dependent on the direction of the initial state even if the initial
positions states are the same.

2. The quantum walker and classical random walker drift away from the center.

3. If the initial direction of the quantum walker is towards right it will drift to the right even if
the bias is in the opposite direction

4.1.4 Shannon Entropy of the Quantum walk

We study entropy of the quantum walk as a function of the bias of the coin operator and as a
function of initial direction. We observe that just like the classical random walk increasing the bias
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Figure 9: Asymptotic states for the biased classical and quantum walk starting at site |0〉.The bias
p = 0.7, R =

√
0.7 for the first plot and p = 0.2, R =

√
0.2 for the other two plots

of the coin-p = R2 decreases the entropy. The entropy of the quantum walk is larger than that
of the classical random walk for the same bias. That could be an indicator of that the Quantum
walk spreading more than the classical walk resulting in greater uncertainty and hence entropy.

The entropy as a function of initial function of the directions is a little more harder to analyse
clearly. We observe that the entropy is larger when the initial direction is more biased towards
one direction compared to the other. The entropy is least when the direction of the initial walk is
not biased. I am unsure how to explain this in terms of uncertainty in the motion of the quantum
walker. Perhaps using a quantum information measure such as Von-neumann entropy would make
sense here?

Figure 10: Entropy of 1D Quantum Walk for varying bias of the coin operator and as initial
direction of the walker

4.2 Two non-interacting Particle Quantum Walk
We look at quantum walk of two non-interacting particles using the formalism discussed in [6].
We explore two particle Quantum walks because it allows us to explore the effect of entanglement
and quantum statistics. The Hilbert space for a two particle Quantum walk is Cn ⊗ Cn. The
unitary matrix is then U = U1 ⊗ U2, where Ui = (I ⊗ Hi) · S where i ∈ 1, 2 is the unitary
matrix for a single quantum walker on a graph. The dimensions of the unitary matrix U is
C2n2 ⊗ C2n2 . The operators H1 and H2 are the coin operators for the first and second quantum
walker respectively.The operators S1 and S2 are the shift operators for the first and second quantum
walker respectively.

The initial state of the quantum walkers is described in the space C2n2 . The initial state can
be a pure state given as,

|Ψ(0)〉 = |j1〉 |d1〉 |j2〉 |d2〉 (29)

Here, |j1〉 |d1〉 and |j2〉 |d2〉 indicates the initial position and direction of the first and second
quantum walkers respectively. The initial state of each of the walkers can also be a superposed
state.

Unlike the classical system, the initial state can also be in an entangled state

|Ψ(0)〉 = α1 |ψ(0)〉1 |ψ(0)〉2 + α2 |ψ(0)〉2 |ψ(0)〉1 (30)
α2
1 + α2

2 = 1 (31)
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The degree of entanglement of the initial state is given by PE defined as,

PE = α1α2 (32)

The initial state as a fermionic entangled state is given below. The fermionic state satisfies the
fermion statistics and is the most negatively entangled state with degree of entanglement given as
PE = −1/2.

|Ψ(0)〉 =
1√
2
|ψ(0)〉1 |ψ(0)〉2 −

1√
2
|ψ(0)〉2 |ψ(0)〉1 (33)

It can also be an Bosonic entangled state given below. The bosonic state satisfies the boson
statistics and is the most positively entangled state with degree of entanglement given as PE = 1/2.

|Ψ(0)〉 =
1√
2
|ψ(0)〉1 |ψ(0)〉2 +

1√
2
|ψ(0)〉2 |ψ(0)〉1 (34)

The correlation as we will see later is non-zero for these entangled states even though they are
not interacting [6]. We look at Quantum walk of two particles starting in a pure state, fermionic
and bosonic entangled states.

4.2.1 Asymptotic Probability Distribution - Spectrum of Two Particle Quantum
Walk

The spectrum or the asymptotic states of a two particle Quantum walk is given by a direct product
of one particle eigenstates |λ〉 that is given in equation-23 i.e, |Λ〉 = |λ1〉 |λ2〉. The figure shows
the four bands of eigenvalues for different coin parameters R1 and R2. Two of the bands overlap
and as Λ = λ1λ2 = λ2λ1. The bands below are for different biases R1 = R2.

Figure 11: Eigenvalue Λ of the unitary operator as a function of k1/n and k2/n where ki is a
value in the momentum lattice of 1D lattice graph with n sites.The different bands correspond to
different values of R1, R2.

Pure state The figure [12] shows the asymptotic state of pure state obtained numerically for
an unbiased coin operator.The asymptotic probability distribution is product of the single particle
probability distributions. This is similar to its classical case of two non-interacting random walkers.

Figure 12: The asymptotic probability distribution is product of the single particle probability
distribution with one walker drifting to left and the other to right
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Entangled States The figure [13] shows the asymptotic state of entangled state obtained
numerically for an unbiased coin operator. The asymptotic probability distribution is not a simple
product of the single particle probability distributions. The asymptotic probability distribution
approaches that of pure states on decreasing the degree of entanglement.

Figure 13: The asymptotic probability distribution is not a simple product of the single particle
probability distribution. The degree of entanglement is 0.4 for the figure on the left and 0.47 for
the figure on the right

Fermionic Entangled State The figure [14] shows the asymptotic state of fermionic entangled
state obtained numerically for an unbiased coin operator. The asymptotic probability distribution
is not a simple product of the single particle probability distributions. We see that the fermions
move away from each other eventhough there is no repulsive interactions.

Figure 14: The asymptotic probability distribution is not a simple product of the single particle
probability distribution. Fermionic antibunching is observed in the figure

Bosonic Entangled State The figure [15] shows the asymptotic state of bosonic entangled
state obtained numerically for an unbiased coin operator. The asymptotic probability distribution
is not a simple product of the single particle probability distributions. We see that the bosons
move towards each other eventhough there is no attractive interactions.

4.2.2 Joint Entropy of the two particle Quantum walk

We calculate the joint entropy for different degrees of entanglement for the unbiased quantum
walks that shown in the previous section. The results are stated below. We observe that Joint
Entropy increases with the degree of entanglement. However, the values of Joint Entropy which are
in bits indicate that it may not be a good quantity for measuring a quantum system. Calculating
the quantum analog might be more helpful in analysis of such a system. Another good quantity
might be Entropy rate which I was unable to calculate.

4.2.3 Correlations non-interacting quantum walks

Correlation between the spatial probability distributions of the two particle Quantum walk can be
calculated using the single particle quantum walk distribution which is given by

〈
|i 〈ψ|ψ〉i |2

〉
and

the joint probability distribution of the two particle Quantum Walk which is given by
〈
| 〈Ψ|Ψ〉 |2

〉
.
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Figure 15: The asymptotic probability distribution is not a simple product of the single particle
probability distribution. Bosonic bunching is observed in the figure

Figure 16: Joint Entropy for varying degrees of entaglement

In each of the cases here, |ψ〉 and |Ψ〉 are the state of the particle after N steps. The correlation
function is given as,

C12 =
〈
| 〈Ψ|Ψ〉 |2

〉
−
〈
|1 〈ψ|ψ〉1 |

2
〉 〈
|2 〈ψ|ψ〉2 |

2
〉

(35)

The correlation evaluated this way was obtained in [6] and is shown below.

Figure 17: Correlation after N steps for the fermionic state(first row), pure state(second row) and
bosonic state(last row)[6]

We observe that for two particle non-interacting quantum walk:

1. There is no correlation between the quantum walkers if the initial state was a pure state

2. The two quantum walks are anticorrelated if the initial state was an entangled fermionic
state.

3. The two quantum walks are correlated if the initial state was an entangled bosonic state.

4.2.4 Hitting time- Comparing quantum and Classical search algorithms

A simple search algorithm on a graph G where some vertices are marked such that M ⊂ V can be
formulated by taking a stochastic matrix T and modifying it such that the algorithm stops when
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a marked vertex is found[1]. The modified matrix is given below.

T ′ij =


0 if j ∈M and i = j

1 if j ∈M and i 6= j

Tij if j /∈M

It can be shown that the number of steps a quantum walk algorithm takes to find a marked
vertex is in the order O(1/

√
1− ‖TM‖) where TM corresponds to the block of the matrix T ′

corresponding to the marked vertices. The classical algorithm takes steps of the order O(1/(1 −
‖TM‖))[1]. Comparing the two we can see that a quantum search algorithm is faster.

5 Conclusions and outlook
We studied the construction of classical and quantum random walks using Markov Chain and quan-
tum Markov Chains respectively. We calculated the asymptotic probability distribution in each
case and found the entropy of this asymptotic state for both the walks. We then compared these
quantities for both the classical and quantum random walks. We also looked at the correlations for
non-interacting two particle walks and learnt that entanglement and quantum statistics affect it.
We also examined a simple search algorithm based on these walks and compared the performance
of the two. We saw that quantum walk provided square root speed ups over the random walk
algorithm.

However, several questions remain unanswered. The first being what information measures are
suitable for the two walks. The classical Shannon entropy was used for both the classical and
the quantum case but this may be incorrect. The second is, can the asymptotic states of the
quantum walk provide us any insight into many body physics. The third question is can a second
quantized formalism be developed for the discrete quantum walk as bosonisation or fermionisation
of a state becomes more cumbersome on increasing the number of quantum walkers. Additionally,
a Quantum Markov chain method for a non-geometric graph has not been discussed and may help
address some of the questions.
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