Two Particle Quantum Walk

What does drunkenness look like in the Quantum Realm?



Random Walk
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A drunkard’s walk—where the choice of
whether to step to the right or the left is
made randomly by the toss of a coin
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Random walk is a stochastic process,
that describes a path that consists of
a succession of random steps on
some mathematical space.



Random Walk as a Markov Chain

 Random walk on a N vertex graph is given by an N X N matrix-T where T;j
represents the probability of making a transition from i to j and Z = 1

* The state space for a 1D Random Walk: {0, £1, 2} with periodic boundary
conditions

0 D 0 0 1-p
1—p 0 P 0 0
T=] 0 1-p 0 » 0 | =7W 47H)
0 0 1—p 0 P
P 0 0 1—0p 0 ]
0100 0 00 0 0 1]
0O 0 1 0 0 1 0 0 0 O
TR =plo 0 0 1 0 T =(1=p) (0 1 0 0 0
00001 00 10 0
1 0000 00 0 1 0f

e u(t+1)=u@®)T ,whereu€ RN
e T can be used to obtain the asymptotic probability distribution

1
* Herem = {Z,-,<,c,c) ,whenp =— , wherem € RN



Random Walk on infinite 1D chain

* For an infinite 1D chain:
* The state space for infinite 1D Random Walk: {0, +1,+2,+3 ...}

P P p P p P
1-p 1-p 1-p 1-p 1-p 1-p

* Asymptotic probability distribution is Gaussian with the position of the peak determined by the
bias of the coin.

; Asymptotic Probabilities of Random Walk
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Some Postulates of Quantum Mechanics

* Hilbert space is a vector space of quantum states (represented by kets-|)))
that is complete.
 Orthonormal basis states representing the position of the particle: {|7) }

* Orthonormality of the basis quantum states (i|j) =

* Uniquely quantum - Superposition of states is also a state in the Hilbert

Space. Bit Qubit
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Some Postulates of Quantum Mechanics

* Observable of a physical system is described by an operator that acts
on the kets.

Pult) = —itiz;|v)

* The only possible result of the measurement of an observable A is
one of the eigenvalues of the corresponding operator

Ahba) — a\%>



Some Postulates of Quantum Mechanics

* Immediately after the measurement of an observable A has yielded a
value a,,, the state of the system is the normalized eigenstate |1/)an).

* The time evolution of a quantum system is given by some unitary
operator U that preserves the normalization of the associated ket.

[P (£)) = Ut to) [ (o))

l.e,

Zil{ilp (o ? = 1 = Elilp ()



Quantizing the Random Walk

Classical Random Walk Quantum Walk
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) Matrix elements between basis quantum states
Matrix elements of T between Markov States

* Probability distribution after one transition * Probability distribution after one transition
ut+1) = u(®)T ,whereu € RN lY(t + 1)) = Uy(t), whereyp € CV
e Suchthat}; u;(t) =1 = u;(t+1) * Such that,

il ON? =1 =Xl + D)



Quantizing the Random Walk-Unitary
Operator
oin operator-Direction Shi_ft operator that moves the
e atorDIreCt [ = (I ®H) . G object

H=i[1 L S= |RXRI® X;1j + 1)
NZE +IL>(L|®z|j)<j—1|
S=sR4st

U=UQH)S* + (IQH)S*"
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Mapping the steps of a Quantum Walk /&
OO

* If the object starts in the state ?’/l\?/\?/l\/\‘/\?

5
¢(0) — |OR> The optical Galton board
1 implementation of quantum
o Fi — Applying H =—» — (|10R) + |OL walks on the line. The thick
FI rSt Step’ l/) (1) Ulp (O)’ RN V2 (l ) | >) lines represent beamsplitters.
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* Third step, ¥(3) = Uy (2) |
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Random walk vs Quantum Walk

Random Walk Quantum Walk
* The probability of being at position i after T steps of the * The probability of being found at position i after T steps
classical random walk on the line starting in O. of the quantum random walk on the line, with the initial
> state NN
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Quantum Walk

e Asymptotic probability distribution of single particle quantum walk
* Eigenstates of the Unitary operator-U = (IQH) - S
* Eigenvalues of a Unitary operator are of the form U|y;) = e*|y,)

* The unitary operator has multiple eigenvalues with absolute value 1,
therefore there are multiple asymptotic probability distributions
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Probability of the particle at sit

Quantum Walk

* Direction of the initial state determines which asymptotic state is
attained.

o

=
=4

e
=
2

e
=
2

symptotic Probabilities of unbiased Random and Quantum Walk
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symptotic Probabilities of unbiased Random and Quantum Walk

Al Random Walk

Random Walk Quantum Walk-3

Quantum Walk-2

004

002

Probability of the particle at sit

-100

dliatticeosite - )2<5

¥(0) = |0L)

:Asymptotic Probabilities of unbiased Random and Quantum Walk
+ oo0s

» —— Random Walk
o oo Quantum Walk-1
Q

U 0.0

E 005

©

o

GJ 0.04

e

+ 0.0.

Y

o

>\DCI

=

5 001

©

0 oo — L1111 11 ARLA SRR

o

Pl -25 . o -3

o Lattice site - x

$(0) = 2 (I0R) +il0L))

qliatticensite - x

¥(0) = |0R)

13



Two-particle Quantum Walk — non-interacting

* The unitary operator for two non-interacting Quantum walkers is
U =U;QU,, Uy = (IQH;) - $1,U; = (IQH3) - S,

e Two-particle quantum walk allows us to study the effects of

indistinguishability and entanglement(another uniquely quantum

phenomena (allegedly)). MTANGLED
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Two-particle Quantum Walk — non-interacting

 Numerically obtained probability distribution for two non-interacting
Quantum walkers starting in pure state (0) = [0L)1[0R)2,

The asymptotic probability distribution is
product of the single particle probability
distribution with one walker drifting to left and
the other to right

Probability of each point in the
state space
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Probability of each point in the

Two-particle Quantum Walk

 Numerically obtained probability distribution for two non-interacting
guantum walker starting in the entangled antisymmetric fermionic

state space

state
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The asymptotic probability distribution is not a
simple product of the single particle
probability distribution. We see that the
fermions move away from each other.
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Two-particle Quantum Walk

* Numerically obtained probability distribution for two non-interacting
guantum walker starting in the entangled symmetric boson state

(0) = 5(|0L)1|0R)2 + [0R)1|0L)>)

The asymptotic probability distribution is not a
simple product of the single particle
probability distribution. We see that the
bosons move towards each other.
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Future work

* Quantum Markov Chain construction of the quantum walk.

 Compare the hitting time for classical and quantum random walkers
on a graph using this construction

 Effect of the coin operator on the hitting time.

 Compare and calculate correlations and entropy rate of multiparticle
guantum walks especially examining the role of entanglement.

* Entropy rate when the two coins H; and H, are entangled



Thank You



Mixed state vs Superposition of States

Mixed State
* Density Matrix of a mixed state.

p=510)(0]+ 3]1)(1]

1o
P=2100 1

e

Superposition of states

* Density matrix of a superposed
state.

p=25(10) + 1) (0] + (1])
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Two Particle-Random Walk

* The state space for a 2D Random Walk: {|i,j]} i, € |—N, N]

[0 1 0 0 0]

l—p 0 p 0 0
T1:T2: 0 1*]3 0 p 0
0 0 1—p 0 p

0 0 0 1 0

* Transition matrix for a 2D Random walk.

T'="1T1 ®15

* T is then used to obtain the asymptotic probability distribution

where T € RNXN



Quantum Walk

* Asymptotic probability distribution of single particle qguantum walk

* Eigenstates of the Unitary operator * Diagonalizing S involves
transforming to the
* Eigenvalues of a Unitary operator U = (1®H) ) momentum basis.
are of the form * Shift operator has two
Ulpy) = emhbl) Coin operator has two eigenstates whose
eigenstates whose eigenvalues have

* Multiple eigenstates as there are
multiple eigenvalues with
absolute value 1

eigenvalues have absolute value 1.
absolute value 1.



