Two Particle Quantum Walk

What does drunkenness look like in the Quantum Realm?

Random Walk

Random walk is a stochastic process, that describes a path that consists of a succession of random steps on some mathematical space.

Random Walk as a Markov Chain

- Random walk on a N vertex graph is given by an $N \times N$ matrix - T where, $T_{i j}$ represents the probability of making a transition from i to j and $\sum_{j=1}^{N} T_{i j}=1$
- The state space for a $1 D$ Random Walk: $\{0, \pm 1, \pm 2\}$ with periodic boundary conditions

$$
\begin{aligned}
& T=\left[\begin{array}{ccccc}
0 & p & 0 & 0 & 1-p \\
1-p & 0 & p & 0 & 0 \\
0 & 1-p & 0 & p & 0 \\
0 & 0 & 1-p & 0 & p \\
p & 0 & 0 & 1-p & 0
\end{array}\right]=T^{(L)}+T^{(R)} \\
& T^{(R)}=p\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{(L)}=(1-p)\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- $\mu(t+1)=\mu(t) T \quad$, where $\mu \in \mathbb{R}^{N}$
- T can be used to obtain the asymptotic probability distribution π
- Here $\pi=\left\{\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right\}$, when $p=\frac{1}{2}$, where $\pi \in \mathbb{R}^{N}$

Random Walk on infinite 1D chain

- For an infinite 1D chain :
- The state space for infinite $1 D$ Random Walk: $\{0, \pm 1, \pm 2, \pm 3 \ldots\}$

- Asymptotic probability distribution is Gaussian with the position of the peak determined by the bias of the coin.

Some Postulates of Quantum Mechanics

- Hilbert space is a vector space of quantum states (represented by kets-| $\psi\rangle$) that is complete.
- Orthonormal basis states representing the position of the particle: $\{|i\rangle\}$

- Orthonormality of the basis quantum states $\langle i \mid j\rangle=\delta_{i j}$
- Uniquely quantum - Superposition of states is also a state in the Hilbert space.

$$
\{|0\rangle,|1\rangle\}
$$

Bit Qubit

|1)

|0)

$$
\{\alpha|0\rangle+\beta|1\rangle\}
$$

Some Postulates of Quantum Mechanics

- Observable of a physical system is described by an operator that acts on the kets.

$$
\hat{p}_{x}|\psi\rangle=-i \hbar \frac{\partial}{\partial x}|\psi\rangle
$$

- The only possible result of the measurement of an observable A is one of the eigenvalues of the corresponding operator

$$
A\left|\psi_{a}\right\rangle=a\left|\psi_{a}\right\rangle
$$

Some Postulates of Quantum Mechanics

- Immediately after the measurement of an observable A has yielded a value a_{n}, the state of the system is the normalized eigenstate $\left|\psi_{a_{n}}\right\rangle$.
- The time evolution of a quantum system is given by some unitary operator U that preserves the normalization of the associated ket.

$$
|\psi(t)\rangle=\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

i.e,
$\sum_{i}\left|\left\langle i \mid \psi\left(t_{0}\right)\right\rangle\right|^{2}=1=\sum_{i}|\langle i \mid \psi(t)\rangle|^{2}$

Quantizing the Random Walk

Classical Random Walk

- Probability distribution after one transition $\mu(t+1)=\mu(t) T$, where $\mu \in \mathbb{R}^{N}$
- Such that $\sum_{i} \mu_{i}(t)=1=\sum_{i} \mu_{i}(t+1)$

Quantum Walk

- Probability distribution after one transition $|\psi(t+1)\rangle=U \psi(t)$, where $\psi \in \mathbb{C}^{N}$
- Such that,
$\sum_{i}|\langle i \mid \psi(t)\rangle|^{2}=1=\sum_{i}|\langle i \mid \psi(t+1)\rangle|^{2}$

Quantizing the Random Walk-Unitary Operator

Coin operator-Direction

 movement$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$$
U=(I \otimes H) \cdot S
$$

Shift operator that moves the object

$$
\begin{aligned}
\mathrm{S}= & |R\rangle\langle R| \otimes \sum_{j}|j+1\rangle\langle j| \\
& +|L\rangle\langle L| \otimes \sum_{j}|j\rangle\langle j-1| \\
S= & S^{R}+S^{L}
\end{aligned}
$$

$$
\begin{gathered}
T \text { P } \\
T^{(R)}=p\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Mapping the steps of a Quantum Walk

- If the object starts in the state
 implementation of quantum walks on the line. The thick lines represent beamsplitters.

$$
\psi(1)=\frac{1}{\sqrt{2}}|-1 L\rangle+\frac{1}{\sqrt{2}}|1 R\rangle
$$

Applying $H \longrightarrow \frac{1}{\sqrt{2}}(|0 R\rangle+|0 L\rangle)$

$$
\text { Applying } S \longrightarrow \frac{1}{\sqrt{2}}(|1 R\rangle+|-1 L\rangle)
$$

- Second step, $\psi(2)=U \psi(1)$,

$$
\psi(2)=\frac{1}{2}(|-2 L\rangle+|0 L\rangle+|0 R\rangle-|2 R\rangle)
$$

- Third step, $\psi(3)=U \psi(2)$,

$$
\psi(3)=\frac{1}{\sqrt{8}}(|-3 L\rangle+|-1 R\rangle+2|1 R\rangle+|1 L\rangle+|3 R\rangle)
$$

Random walk vs Quantum Walk

Random Walk

- The probability of being at position i after T steps of the classical random walk on the line starting in 0 .

Quantum Walk

- The probability of being found at position i after T steps of the quantum random walk on the line, with the initial state

Quantum Walk

- Asymptotic probability distribution of single particle quantum walk
- Eigenstates of the Unitary operator $-U=(I \otimes H) \cdot S$
- Eigenvalues of a Unitary operator are of the form $U\left|\psi_{\lambda}\right\rangle=e^{i \lambda}\left|\psi_{\lambda}\right\rangle$
- The unitary operator has multiple eigenvalues with absolute value 1 , therefore there are multiple asymptotic probability distributions

Quantum Walk

- Direction of the initial state determines which asymptotic state is attained.

Two-particle Quantum Walk - non-interacting

- The unitary operator for two non-interacting Quantum walkers is
- $U=U_{1} \otimes U_{2}, \quad U_{1}=\left(I \otimes H_{1}\right) \cdot S_{1}, U_{2}=\left(I \otimes H_{2}\right) \cdot S_{2}$
- Two-particle quantum walk allows us to study the effects of indistinguishability and entanglement(another uniquely quantum phenomena (allegedly)).

Two-particle Quantum Walk - non-interacting

- Numerically obtained probability distribution for two non-interacting Quantum walkers starting in pure state $\psi(0)=|0 L\rangle_{1}|0 R\rangle_{2}$.

The asymptotic probability distribution is product of the single particle probability distribution with one walker drifting to left and the other to right

Two-particle Quantum Walk

- Numerically obtained probability distribution for two non-interacting quantum walker starting in the entangled antisymmetric fermionic state

$$
\psi(0)=\frac{1}{\sqrt{2}}\left(|0 L\rangle_{1}|0 R\rangle_{2}-|0 R\rangle_{1}|0 L\rangle_{2}\right)
$$

The asymptotic probability distribution is not a simple product of the single particle probability distribution. We see that the fermions move away from each other.

Two-particle Quantum Walk

- Numerically obtained probability distribution for two non-interacting quantum walker starting in the entangled symmetric boson state

$$
\psi(0)=\frac{1}{\sqrt{2}}\left(|0 L\rangle_{1}|0 R\rangle_{2}+|0 R\rangle_{1}|0 L\rangle_{2}\right)
$$

The asymptotic probability distribution is not a simple product of the single particle probability distribution. We see that the bosons move towards each other.

Future work

- Quantum Markov Chain construction of the quantum walk.
- Compare the hitting time for classical and quantum random walkers on a graph using this construction
- Effect of the coin operator on the hitting time.
- Compare and calculate correlations and entropy rate of multiparticle quantum walks especially examining the role of entanglement.
- Entropy rate when the two coins H_{1} and H_{2} are entangled

Thank You

Mixed state vs Superposition of States

Mixed State

- Density Matrix of a mixed state.

$$
\begin{aligned}
& \rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \\
& \rho=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Superposition of states

- Density matrix of a superposed state.

$$
\begin{aligned}
& \rho=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(\langle 0|+\langle 1|) \\
& \rho=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Two Particle-Random Walk

- The state space for a $2 D$ Random Walk: $\{[i, j]\} i, j \in[-N, N]$

$$
T_{1}=T_{2}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1-p & 0 & p & 0 & 0 \\
0 & 1-p & 0 & p & 0 \\
0 & 0 & 1-p & 0 & p \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- Transition matrix for a 2D Random walk.

$$
T=T_{1} \otimes T_{2}
$$

- T is then used to obtain the asymptotic probability distribution π where $\pi \in \mathbb{R}^{N \times N}$

Quantum Walk

- Asymptotic probability distribution of single particle quantum walk
- Eigenstates of the Unitary operator
- Eigenvalues of a Unitary operator $U=(I \otimes H) \cdot S$ are of the form
$U\left|\psi_{\lambda}\right\rangle=e^{i \lambda}\left|\psi_{\lambda}\right\rangle$
- Multiple eigenstates as there are multiple eigenvalues with absolute value 1
- Diagonalizing S involves transforming to the momentum basis.
- Shift operator has two eigenstates whose eigenvalues have absolute value 1.

