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Abstract

We investigate the non-zero phase pure-state quantum predictive model.
We first set the frameworks of a quantum predictive model called a pure-
state quantum model. Then we study three stochastic processes by em-
bedding them to this quantum predictive model. We evaluate the minimal
memory required to model the stochastic processes in this quantum model
and compare the result to the classical ε−machine and q-machine. The
result is that by carefully choosing the parameters in our quantum model,
the memory required in quantum model can be less than the memory
required in ε−machine and q-machine.

1 Introduction

Stochastic processes are ubiquitous in science. One of the interesting quantities
related to a stochastic process is the minimal memory required to model this
stochastic process. Classically it is solved by ε−machine [1]. Quantumly, it is
shown that q-machines require less memory. And the maximum compression
is determined by the cryptic order of the stochastic process[2]. For perturbed
coins[3] and Ising model[4][5] the minimal memory in quantum model is de-
termined. In other cases, the minimal memory is unknown. In this paper
we propose a new quantum model: pure-state quantum model with non-zero
phases and show that by choosing appropriate phases our model even requires
less memory than the q-machine. We also provide a way to search the minimal
memory in pure state quantum model.

2 Frameworks

Here we consider a discrete stationary stochastic process that at each discrete
time t emits an output xi from a finite alphabet X with a probability distribution
Pr( ~X, ~X). For each past ~x we have a conditional probability Pr( ~X| ~x). A predic-
tive model is an algorithm which given a specific past can generate the identical
conditional future behavior. Each model specifies an encoding function ε map-
ping each past to an internal state s ∈ S such that systematic actions on this
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system at future time-steps will generate a string of outputs obeying Pr( ~X| ~x).
Since we consider a stationary stochastic process, at each time step we have
the same internal states in our predictive model. The stochastic process can be
modeled by Markovian dynamics on S. At each time t, the predictive model in st
generate the output xt+1 according to Pr(Xt+1| ~xt) = Pr(Xt+1|st) and updates
its internal state to ε( ~xxt+1). The amount of memory needed for this model is
given by Shannon entropy H(S) = −

∑
s ps log2 ps where ps is the probability

ε( ~x) = s. Obviously, the stochastic process itself is a predictive model map-
ping each past to itself. Given a stochastic process, computational mechanics
provides a framework to construct the minimal predictive model which is called
ε− machine by mapping pasts with the same conditional future probability to
a state. Each state in ε− machine is called a causal state. The memory that
the minimal model of a stochastic process required is called the statistical com-
plexity of the stochastic process. This is the minimal information needed to
simulate the future.

A quantum predictive model is a model in which the pasts are mapped to
the quantum states and for each output x there is a corresponding operator T x.
The future conditional probabilities are encoded in the states. At each time
step t the quantum state is |ψt〉. After the output x is observed in classical
predictive model the quantum state is updated to T x|ψt〉. The probabilities
of a given string can be given by a projective measurement. In this sense, a
quantum predictive model can provide the same conditional future probabilities
as in the stochastic process. Given a classical predictive model we have one
corresponding quantum predictive model and we call this the quantization of a
classical predictive model. We will illustrate this idea next.

2.1 Quantize classical predictive model

Here we first give a strict definition of the classical predictive models.[6]

Definition 1 (Classical predictive model) A classical predictive model is a
triplet M = (R,A, {T x, x ∈ A}) of hidden states R, an output alphabet A, and
non-negative transition matrices T xρρ′ with x ∈ A and ρ, ρ′ ∈ R, satisfying the
properties:

• Irreducibility : T =
∑
x∈A T

x is stochastic

• Unifilarity : T xρρ′ ∼ δρ′,f(ρ,x) for a deterministic function f

The corresponding quantized predictive model is given below.

Definition 2 (Pure state quantum predictive model) A pure state quan-
tum predictive model is a triplet Q = (Σ,A, {T x, x ∈ A}) of pure quantum states
Σ, an output alphabet A, and operators T x with x ∈ A. For each hidden state
s ∈ R in classical predictive model there is a corresponding pure state |s〉 ∈ Σ.
They must satisfy the following properties:

•
∑
x∈A T x†T x = 1
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• T x|si〉 =
√

Pr(f(i, x), x|i)eiθi→f(i,x) |sf(i,x)〉

where θi→f(i,x) are tunable parameters.

Those properties come directly from the transition probabilities. In this quan-
tum the probabilities are encoded in this way: suppose the current state is |i〉 the
probability of observing output x accroding to Born rules is:

∑
k |〈i|T x|ek〉|2 =

Tr(|i〉〈i|T xT x†) = Pr(f(i, x), x|i) where |ek〉 are basis in Hilbert space. It is not
hard to prove those properties. The inner products of two quantum states are
given by:

〈i|j〉 = 〈i|1|j〉 = 〈i|
∑
a

T a(T a)†|j〉 (1)

=
∑
a

√
Pr(l, a|j)Pr(k, a|i)(iθajl − iθaik)〈k|l〉

In a quantum model M the statistical complexity is replaced by von Neumann
entropy C(M) of the initial density matrix ρ =

∑
s ps|s〉〈s|. And we call a

quantum model M of a stochastic process optimal if and only if for any other
quantum model M′, C(M) ≤ C(M′). We can prove that in optimal quantum
model there is a one-to-one correspondence between classical causal states and
quantum pure states [5]. There is no benefit in differentiating two different
pasts with the same conditional futures. Hence, in order to find out the optimal
quantum model, we only need to consider the quantization of the ε−machine.

In pure state quantum model the number of phases is equal to the number
of transitions in the classical model. One of goals of this project is to search the
minimum von Neumann entropy of a quantum model given a classical process.
Luckily with the inner products of states the von Neumann entropy can be
evaluated by the Gram matrix [7] [8] as the function of free phases. Then the
question turns out to be finding the global minimum of a function in the entire
phases space. In the next section we will show three examples how to find out
the minimum von Neumann entropy given the classical model.

3 Examples

3.1 Perturbed coins

We consider a perturbed coin of which possible outcomes are A and B. At each
time step, the coin is perturbed such that the coin flips with the probability p
and states of coins are observed. For any p 6= 0.5, we have two causal states;
the set of pasts ending in A, and the set of pasts ending in B.

Classically the memory in order to simulate this process is 1 bits. Quantized
perturbed coin is given by two quantum states |A〉 and |B〉 and two operators
T 0 and T 1. The effects of two operators on two states are:

T 0 |A〉 =
√
p exp(iθ1) |A〉 T 0 |B〉 =

√
1− p exp(iθ2) |A〉 (2)

T 1 |B〉 =
√
p exp(iθ3) |A〉 T 1 |A〉 =

√
1− p exp(iθ4) |B〉
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Figure 1: ε−Machine of Perturbed coins

And the inner product of those two states is:

〈B|A〉 =
√
p
√

1− p
(

exp(iθ1 − iθ2) + exp(iθ4 − iθ3)

)
(3)

=
√
p
√

1− p r exp(iθ)

where r ∈ [0, 2] and θ ∈ [0, 2π]. In order to generate the same probabilities as
in the classical model the initial state we prepare is

ρ =
1

2
|A〉〈A|+ 1

2
|B〉〈B| (4)

With the inner product of two states, the von Neumann entropy of the ini-
tial mixed state can be calculated by using the Gram matrix method. After
diagonalizing the density matrix two eigenvalues are

λ1 =
1

2

(
1− r

√
p− p2

)
, λ2 =

1

2

(
1 + r

√
p− p2

)
. (5)

The von-Neumann entropy of this system is S = −λ1 log2 λ1 − λ2 log2 λ2. It is
obvious that when r = 2 the von-Neumann entropy obtains the minimum. We
call it minimal pure state quantum ε− machine. And von Neumann entropy is
independent of phase θ. When r = 2, θ = 0 we have:

〈A|B〉 = 2
√
p
√

1− p (6)

This is the same as L=1 q machine:

|B〉 =
√

1− p|0〉+
√
p|1〉 (7)

|A〉 =
√
p|0〉+

√
1− p|1〉

When p = 0.5 and r = 2 one of eigenvalue is 0 and von Neumann entropy is
0. This is because when we simulate a fair coin no memory is needed. The
upcoming output is independent of the past. If we set r = 0 the two states are
orthogonal. We recover the classical model.

3.2 Nemo process

The next example is three-state Nemo Process. [2] shows that von Neumann
entropy Cq(L) decreases as L increases and Cq(∞) ∼ 1.0332. Here we first
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Figure 2: ε−Machine of Nemo process

evaluate the inner products and recover the previous result. The effects of two
operators on three states are:

T 0 |A〉 =
√
p exp(iθ1) |A〉 (8)

T 0 |B〉 = 0

T 0 |C〉 =
√

1/2 exp(iθ2)|A〉
T 1 |A〉 =

√
1− p exp(iθ3) |B〉

T 1 |B〉 = exp(iθ4) |C〉
T 1 |C〉 =

√
1/2 exp(iθ5)|A〉.

And inner products are

〈A|B〉 =

√
p(1− p)
1 + p

exp(iθ1 − θ2 − θ3 + θ5) (9)

〈B|C〉 =

√
p

1 + p
exp(iθ1 − θ2 − θ4 + θ5)

〈A|C〉 =

√
2p

1 + p
exp(iθ1 − θ2).

In order to simplify the calculation, we choose the phases of |A〉 and |B〉 such
that 〈A|B〉 and 〈B|C〉 are real numbers leaving only one phase θ in 〈A|C〉:

〈A|B〉 =

√
p(1− p)
1 + p

(10)

〈B|C〉 =

√
p

1 + p

〈A|C〉 =

√
2p

1 + p
exp(iθ).

The initial mixed state we prepare is

ρ =
1

3− 2p
|A〉〈A|+ 1− p

3− 2p
|B〉〈B|+ 1− p

3− 2p
|C〉〈C|. (11)

Here we choose p = 0.666 same as in and evaluate von Neumann entropy as a
function of the phase θ. As expected when θ = 0 von Neumann entropy is the
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Figure 3: Entropy for p=0.666 Nemo Process. (Mahoney, Aghamohammadi,
Crutchfield. 2016)

same as asymptotic Cq(L) in q-machine. Since in q-machine we set all phases to
be 0. And we can see the von Neumann entropy reaches minimum when θ = π:

〈A|B〉 =

√
p(1− p)
1 + p

(12)

〈B|C〉 =

√
p

1 + p

〈A|C〉 = −
√

2p

1 + p

We can check that one of the eigenvalues is 0 when p = 1 or p =
3
√

9+
√
87

62/3
−

1
3
√

6(9+
√
87)
∼ 0.589755. When p = 1 there are only two current states so

we only need two states to model this process. When p ∼ 0.589755 there is
the dimensional advantage in quantum model. Classical 3-state process can be
modeled by 2 states in quantum mechanics.

3.3 3-state MBW process

The last example we study is 3-state MBW process which is a Markov process.
The q-machines of this process are studied in [6]. Here we still first list the effect
of operators on states:

T A|A〉 =

√
2

3
eiφAA , T B |A〉 =

√
1

6
eiφAB , T C |A〉 =

√
1

6
eiφAC (13)

T A|B〉 =

√
1

6
eiφBA , T B |B〉 =

√
2

3
eiφBB , T C |B〉 =

√
1

6
eiφBC

T A|C〉 =

√
1

6
eiφCA , T B |C〉 =

√
1

6
eiφCB , T C |C〉 =

√
2

3
eiφCC
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Figure 4: ε−Machine of 3MBW process

And inner products are given by:

〈A|B〉 =
1

3
ei(φBA−φAA) +

1

3
ei(φBB−φAB) +

1

6
ei(φBC−φAC) = rABe

iθ1 (14)

〈A|C〉 =
1

3
ei(φCA−φAA) +

1

3
ei(φCB−φAB) +

1

6
ei(φCB−φAB) = rACe

iθ2

〈B|C〉 =
1

3
ei(φBB−φBC) +

1

3
ei(φCB−φCC) +

1

6
ei(φAB−φAC) = rBCe

iθ3

Since we have nine free parameters in this model the overall phases θ1,2,3 ∈
[0, 2π] and rAB,AC,BC ∈ [0, 56 ]. We can choose the phases of B and C such that
〈A|B〉 and 〈A|C〉 are real number:

〈A|B〉 = rAB (15)

〈A|C〉 = rAC

〈B|C〉 = rBCe
iφ

The mixed state we prepare is ρ = 1
3 |A〉〈A| +

1
3 |B〉〈B| +

1
3 |C〉〈C|. The other

constraint we have on this system is that we ask the three eigenvalues of the
density matrix to be positive: 1+2 rAB rBC rAC cos(φ) ≥ r2AB+r2BC+r2AC . We
scan the entire phase space and find that the minimum von Neumann entropy
is obtained at rAB = rBC = rAC = 5

6 , cos θ = 117
125 . The minimum von Neumann

entropy and eigenvalues are S = 0.515109 and {0, 1
18

(
9− 4

√
3
)
, 1
18

(
9 + 4

√
3
)
}.

In this process the quantum model also enjoys dimensional advantage. q-
machines can be treated as special cases in our model. For 3 dimension q-
machine rAB = rBC = rAC = 5

6 , cos θ = 1 and for 2 dimension q-machine
rAB = rBC = rAC = 1

2 , cos θ = −1. The von Neumann entropies are Sq3 = 0.61
and Sq2 = 1 bits.
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4 Unitary realization

In the frameworks discussed above, the operators T x are not unitary. In [9]
they propose a unitary simulator. Based on their work we can design a unitary
operator for our model. The idea is to consider our system as a subsystem of a
larger system:

U |si〉|0〉 =
∑
x

√
Pr(f(i, x), x|i)eiθi→f(i,x) |sf(i,x)〉|x〉 (16)

where |x〉 are orthogonal states. At each time step we measure in the |x〉 basis.
This generate the probability correctly. And operator U is unitary.

5 Conclusion and open questions

In this project, we restudy the way to quantize the classical predictive model. In
the quantized model, we have free parameters of which number is equal to the
number of transitions in the classical predictive model. In general von Neumann
entropy of the quantum system is dependent on the choice of the phases. We
provide a way to find the minimum von Neumann entropy in simple processes.
Those are the minimal pure-state quantum model. However several questions
remain unanswered: a) Our project is mainly focused on simple processes. The
number of free parameters is equal to the number of transitions. For a general
process, the task of finding the minimal model could be time-consuming. For all
three processes we study in this project we find that all three minimal models
are at the boundary of the phase space. It is unclear whether this is true in
general or not. b) In this project we assign each classical causal state to a
pure quantum state. Are there any other frameworks in quantum model? For
example, assigning a causal state to a mixed quantum state. c) For pure-state
quantum models we search the minimal model by quantizing the ε−machine. If
we start with a non-minimal classical model, can we reach the same minimal
pure-state quantum model by quantizing the non-minimal classical model?
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