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Abstract 
 
The 2D Ising model is a particular example of a thermodynamic system, and it's a model system for 
understanding phase transitions and has been generally learned and studied by scholars. Originally it was 
used for modeling the change of magnetization, but the model is also applicable to model various topics. 
The Ising model is intrinsically stochastic and can be understood as a Markov process.  In this project, we 
modeled a 2D Ising model with a hidden Markov model and reconstructed the corresponding ε-Machine 
out of several tests. The block entropy and entropy rate are for the process are also obtained.   
 

Introduction 
 

The Ising problem was originally formalized and 
developed to simulate the phase change of a 
piece of a lattice with spin in each cell. In this 
situation, the total energy of the lattice is 
determined by the spin configuration of each 
neighborhood of cells, and the temporal evolution 
of our spin will follow the thermodynamic 
distribution. From a perspective of the information 
theory, the Ising model is intrinsically a Markov 
process, since it has the property that the next 
temporal state is only decided by the one 
previous state and irrelevant to further future, 
thus it is memoryless. The 2D Ising model is often 
simulated by Metropolis-Hastings Monte Carlo 
(MHMC) simulation, in which during each time 
step a spin is flipped and the change is kept by 
thermodynamic probability. 
 
The behavior of our model or the system in each 
time step is easy to understand and track and the 
near future is predictable. But the reason that this 
model is so fascinating and has been studied by 
generations of scholars is its intrinsic stochasticity 
for a long future and capability of modeling such 
a complex system. Out of physics, the 2D model 
has also been used to describe some sociological 
system such as the vote, that each cell can 
represent an individual with its spin being the 
candidate he/she will vote to. Such expansions to 
the interpretation of the Ising model also 
demonstrates the model's capability of simulating 
more complicated systems. 

The general Markov model (not Hidden Markov 
model) has been used to fully model the 2D 
MHMC simulation of the Ising problem by parsing 
the successfulness of flipping a spin at each time 
step to its word distribution. Previous work by 
Iglovikov [2], shows that the entropy rate and 
statistical complexity of the Monte Carlo 
simulation are equal to the thermodynamical 
entropy of the system that we simulate and the 
excess entropy of the system can be used as a 
natural order parameter to find phase transition 
temperature. In this work, I'm interested in finding 
a way to describe not the detailed change of 
configuration of each spin in the whole system but 
the collective property of the system as a whole 
by parsing the change of average magnetization 
(average spin) of the system per an arbitrary 
period to be the word distribution, then building a 
hidden Markov Model ε-Machine based on such 
setup and finally look at the power of predictability 
and transition probabilities of the machine. 
 

Background 
 
The 2D Ising Model 
 
In simulation programs, a 2D Ising model is 
represented by a N x N matrix, with N being the 
dimension of the system to be modeled, a square 
matrix is often used by convention. The matrix 
elements of the N x N matrix can be either +1 or 
-1 representing two opposite kinds of spins. As a 
physical system, the Hamiltonian of the whole 
system is given by



 
𝜎	is	the	direction	of	the	ith	particle's	spin	which	can	
be	 either	 "up"	 (+1)	 or	 "down"	 (-1),	 h	 is	 the	
magnitude	 of	 the	 applied	 magnetic	 field	 (not	
Planck's	constant),	and	J	is	the	spin-spin	coupling	
term	 between	 adjacent	 spins	 on	 the	 lattice.	 The	
first	 term	 is	 barely	 the	 sum	 of	 all	 spins	 times	 a	
constant,	 and	 the	 second	 term	 is	 an	 interaction	
term	that	makes	things	interesting.	
 
Metropolis-Hastings Monte Carlo Update 
Algorithm 
 
The update algorithms itself is simple at each 
time step 
For i in number_of_steps: 
        do: 
        old_matrix = copy(matrix) 
        old_energy = Hamiltonian(matrix) 
 
        x, y = random(range = N, size = 2) 
        matrix(x, y) = -1 * matrix(x, y) 
        new_energy = Hamiltonian(matrix) 
 
        if new_energy < old_energy: 
                ## accept the change and move on 
                continue 
        else: ## keep the change by chance 
              factor =  !
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              r = random(range = (0, 1), size = 1) 
              if r > factor: 
                      ## accept the change 
                      continue 
              else: ## reject the change 
                      matrix = old_matrix 
                      continue  
 
With such an algorithm, the system tends to find 
a lower energy state that is suggested by 
thermodynamics. For a large system, the global 
minimum is hard to solve, but after millions of 
iterations with this algorithm, we can see come 
local minimum and the change between states.  

The visualization of a 2D Ising model after an 
evolution of 10000 steps shows below

 
Figure 1. A 2D Ising modeling example, with red cells 
representing matrix elements with spin “up”, and black cells 
being “down” spins. The first term in the Hamiltonian is 
ignored by this simulation, and the average magnetization 
(average spin) of this configuration is -0.071, which is almost 
neutral.  
 

Methods 
 

In this project, several simplifications have been 
applied to the model. First, the first term in the 
Hamiltonian is ignored by setting the magnitude 
of the external field to be zero. The reason is, with 
an applied external magnetic field and effective 
first term in the Hamiltonian, the system will tend 
to convert to have the same spin. That is to say 
that all spin "up" is a trivial solution and the 
system to be studied will become less chaotic and 
less interesting to look at. All cells are initialized 
by spin "up" (+1) as a convention. 
 
The experiment is designed under a 
temperature of kT = 4 to gain more stochasticity 
and a nearly neutral average spin. The 
temperature dependence of the average spin 
(average magnetization) with respect to time 



steps is described below

 
Figure 2. The change of average magnetization with respect 

to number of steps under different temperatures. 
 
As is described in Figure 2. Under some low 
temperatures, the systems always have average 
spins near 1, all spin "up". As the temperature 
increases to kT = 4, the system starts to fluctuate 
around neutral total spin with some periodicity 
and patterns. 
 
Unlike the Markov approach on understanding an 
Ising model, this project tries to interpret the 
system using a hidden Markov process and the 
MHMC process is parsed in the below way to 
generate the word distribution for reconstructing 
the corresponding ε-Machine. The MHMC 
modeling runs for 250,000 iterations in total for 
each test. The average spin of the system is 
uniformly sampled per 50000 steps that generate 
a word of length-5 per test run. The letters to be 
observed in each word are either "0" or "1", if the 
average spin at the current sampling step is 
greater than 0, it reads a letter of "1", otherwise, 
it reads a "0". For a length-5 output generated 
after a test run 
 

“1” -> “1” -> “0” -> “1” -> “0” 
 

It means at step 50000, 100000, 150000, 200000, 
and 250000, the average spin is greater than 0, 
greater than 0, less than 0, greater than 0, and 
less than 0, respectively. That is to say that the 
model is designed to collect and summarize the 
behaviors of the MHMC process for the first 
250,000 steps. This range of iteration is chosen 
based on the balance of information to learn and 
computation time consumption. From Figure 2., 

we can see that this number is sufficient to see 
the turning point between all spin-up initial states 
and fluctuating states. 
 
There are 100 test runs in total and therefore 
there are one hundred length-5 words that we 
collected to generate the word distribution. 
Afterward, the hidden states are identified with 
the depth-5 parse tree and depth-2 morphs.  
Then, the corresponding hidden Markov model 
with transition probabilities between states is 
established with its block entropy and entropy 
rate calculated by CMPy. 
 
The block entropy is defined by 
 

 
 
 With L being the word length, that is 5 in this work, 
and Pr(sL) being the probability to observe each 
unique length-5 word. The excess entropy is 
generally defined by 
 

 
 
While we cannot possibly find the block entropy 
of infinity word length, L = 5 is used for calculating 
the asymptotic excess entropy instead.  
 

Results 
 

The parse tree of the 100 tests is successfully 
constructed and is shown in Figure 3. It is 
represented by the figure that the system always 
has to start from node-0 and move to node-2 by 
producing a "1", which is the initialization phase 
between 0 step and roughly 10,000 steps in 
Figure 2. Then the tree starts to split into nodes 
with close but nonequal probabilities to produce 
either "0" or "1", which suggests that our paring 
method and the choice of sampling period are 
proper that the parse tree successfully describe 
the oscillation of the average spin of the system 
by temporal evolution. 
 
It’s a big system with 100 trail tests, so 
numerically equal splitting probabilities for all the 
nodes are not expected, which is to say that it is 
hard to find a way to transform Figure 3. exactly



to a Markov diagram exactly unless each different node is a different state which will generate a huge 
number of causal states and is hardly helpful.  Certain approximation is made to help the analysis: the 
splitting probabilities between nodes are approximated to 1 significant figure.  
 

Figure 3. Parse tree of length 5 from 100 testing trials of the MHMC model. Nodes colored with pink has no explicit meaning with the 
numbering yet. The output letters on each arrow are separated from the conditional probability to observe the output (“0” or “1” 

meaning average magnetization greater or lower than zero). 
 
With such approximation to splitting probabilities 
and combining nodes, a Markov diagram Figure 
4. is inferred from Figure 3.  In Figure 4., each 
node is labeled with a letter without explicit 
meaning since the model is a hidden Markov 
process, and thus states "A" to "K" are hidden 
states. The diagram is still not complete due to 
the limiting word length and diverges from the 
state "H", "I', "J", "K" that may or may not go back 
to existing states.  

 
Figure 4. Inferred hidden Markov chain from MHMC 

simulation with 250,000 time steps. 

The block entropy and entropy rate for this 
process are 3.93 and 0.785 respectively. 
 

Discussion 
 
In this project, the parse tree and its hidden 
Markov model for the 2D Ising model are 
established as expected. It is shown that the 
parse tree has a large level of randomness and 
looks like a fair-coin-shaped distribution at the 
first glance. However, with some approximation 
to the splitting/transition probabilities, we found 
not only many transient states but also one state, 
"E" that's recurrent to itself.  State "E" in Figure 4. 
comes from nodes "12", "14", "25", "26", "29", and 
"30" on Figure 3. These findings are telling that 
the complexity of a simplified Ising model is much 
higher than other classical processes that have 
been studied in class, because most of the states 
are transient and don't come back, and each 
configuration is in a unique hidden state. It is also 
exciting that we found a recurrent state, "E". If 
more experiments can be performed with longer 
word length generated, we're able to see how 
persistent is the state "E" in the evolution of an 
Ising model and how is such state related to 
physical properties of a given Ising model. The 



excess entropy hμ is compared to reference 
thermodynamic entropy [2], 0.97 at kT = 4, the 
error is around 20%. The accuracy of the excess 
entropy is expected to be low because of the 
sampling method that we performed. 
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