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Abstract 
A model of phylogenetic space capable of representing the change in biological form (∂ε) with 
respect to the change in time (∂𝑡𝑡) must be equipped with two metrics, one for form (𝑑𝑑ε) and one 
for time (𝑑𝑑𝑡𝑡). Such representations are lacking in biology, suggesting that the challenge of 
constructing a dynamic representation of phylogenetic space has not been fully acknowledged. 
Here, I develop such a representation as a stochastic iterated function system. Information 
measures are then used to obtain a metric of biological form 𝑑𝑑ε. A few comments are then given 
about how to obtain the metric of time 𝑑𝑑𝑡𝑡. 

Introduction 
Motivation 
Dynamical thinking in evolution has typically been concerned with population genetics, selection 
in ecology (e.g., the logistics equation), and evolutionary game theory (Nowak, 2006). Little 
attention has been paid to the theoretical and topological underpinnings of how phylogenetic 
space changes over time. Though biologists have been making phylogenetic trees since before 
Darwin (Hitchcock, 1840), the need for dynamic representations of phylogenetic space seems to 
have been overlooked.  
 
Why it is interesting 
We all experience time as a biological phenomenon: we are born, we grow, we die, and then 
presumably that is the end of time for each of us. To assume time is something other than 
biological is to engage in metaphysical speculation. The question of how to represent the 
dynamic tree of life is not some quaint biological enterprise; it is a question of the nature of time 
itself, and therefore, a question central to physics and all of science. 
 
Synopsis of project and results 
The dynamic model of phylogenetic space developed here is based on five principles: the 
principle of sufficient dimensions (need both 𝑑𝑑ε and 𝑑𝑑𝑡𝑡 defined in order to have ∂ε

∂𝑡𝑡
), the random 

principle (biological systems are stochastic processes), the nested principle (a species tree 
constitutes a genus node), and the organism-population duality principle (populations, not 
organisms, evolve).  
 
A stochastic iterated function system that generates a structure capturing these five principles is 
then given. The stochasticity of the structure makes it well-suited for the application of 
information measures. The form-wise distance between two taxa 𝑖𝑖 and 𝑗𝑗 is captured as the 
information distance. 



 
Simulation results meant to show the coherence of the model are given. These include lineage-
specific entropy calculations, pathwise mutual information calculations (i.e., the mutual 
information between “parent” and “child”), cross-path mutual information calculations (i.e., the 
mutual information between distantly related species), and cross-path information distance 
calculations. An interesting result is the calculation of channel capacities along lineages, which 
provides a means of identifying which areas of the system are evolutionarily conserved, and 
which are rapid proliferators.  

Background 
Requirement 1: sufficient dimensions 
Phylogenetic models with distance metrics defined on the space come in two forms: 
chronograms, where branch lengths are proportional to time intervals, and phylograms, where 
branch lengths are proportional to biological form (Bleidorn, 2017) (Figure 1). 

 
Figure 1 (LEFT) A hypothetical chronogram showing temporal distance between taxa 𝑖𝑖 and 𝑗𝑗. The metric 𝑑𝑑𝑡𝑡(𝑖𝑖, 𝑗𝑗) returns a scalar 

with units of time. (RIGHT) A hypothetical phylogram showing form-wise distance between taxa 𝑖𝑖 and 𝑗𝑗. The metric 𝑑𝑑𝜀𝜀(𝑖𝑖, 𝑗𝑗) 
returns a scalar with units of biological form. 

Both chronograms and phylograms are individually inadequate to represent the dynamic ∂ε
∂𝑡𝑡

 for 
the simple reason that each has insufficient dimensions. For a chronogram we have 𝑡𝑡 and 
therefore potentially ∂𝑡𝑡, but we lack ε and therefore ∂ε. For a phylogram we have ε and therefore 
potentially ∂ε, but we lack 𝑡𝑡 and therefore ∂𝑡𝑡.  
 
In order to represent the dynamic case, we need both 𝑡𝑡 and ε on the same space with their 
corresponding metrics 𝑑𝑑𝑡𝑡 and 𝑑𝑑ε defined on that space. 
 
Requirement 2: the random principle 
The random principle is central to Darwin’s descent-with-modification (Darwin, 1859). This is 
arguably the main distinction between Darwin’s mechanism of evolution and Jean Baptiste 
Lamarck’s mechanism of evolution (Lamarck, 1809). Darwin’s theory is really the observation 
of what happens when reproducing populations are subject to a random generator under 
conditions of finite environmental carrying capacity. The random generator is the engine of 
modern evolutionary theory, and the foundation of modern biology as a whole. While the 
mechanisms of evolution are many, they all have as their basis random mutations in the genome 
during cell reproduction. Our model of phylogenetic space must capture this stochasticity of 
biological systems. 
 



Requirement 3: the nested principle 
While randomness is a hypothesis of Darwin’s theory, the “nested principle” is a logical 
implication of Darwin’s theory.  

We can state the principle as follows: 
 

A family tree 𝑇𝑇𝐹𝐹  consists of a set of families {𝐹𝐹𝑖𝑖 …𝐹𝐹#} that contains a family 𝐹𝐹𝑘𝑘 
constituted by a genus tree 𝑇𝑇𝐺𝐺  that consists of a set of genera {𝐺𝐺𝑖𝑖 …𝐺𝐺#} that contains a 
genus 𝐺𝐺𝑘𝑘 constituted by a species tree 𝑇𝑇𝑆𝑆 which consists of species {𝑆𝑆𝑖𝑖 , . . , 𝑆𝑆#} that 
contains a species 𝑆𝑆𝑘𝑘, and so on. The inclusions, with 𝑘𝑘 representing an individual taxon, 
go as: 

 
…𝑇𝑇𝐹𝐹 = {𝐹𝐹𝑖𝑖 …𝐹𝐹#} ∋ 𝐹𝐹𝑘𝑘 =  𝑇𝑇𝐺𝐺 = {𝐺𝐺𝑖𝑖 …𝐺𝐺#} ∋ 𝐺𝐺𝑘𝑘 = 𝑇𝑇𝑆𝑆  =  {𝑆𝑆𝑖𝑖 , . . , 𝑆𝑆#} ∋ 𝑆𝑆𝑘𝑘  … 
 

Where, to keep notation from blowing up, # denotes some unspecified number. 
The nested principle is the statement that a species tree is the convex hull of a genus node. 
Stated simply, downscale trees constitute upscale nodes. This allows for a variable of biological 
form (denoted ε) along a path 𝑖𝑖, giving tree location (denoted ε𝑖𝑖). This effectively equates 
biological form with pathwise scale. The contraction of form along a path (denoted ∂εi ↓) 
expands upscale nodes to downscale trees, while the expansion of time (denoted ∂𝑡𝑡 ↑) separates 
nodes. Figure 2 visually illustrates the nested principle. 

 
Figure 2 (TOP) The nested principle. A species tree is the convex hull of a genus node. Node/edge size reduction is used to 
represent scale 𝜀𝜀 (i.e., biological form). The contraction of scale expands a node to a tree. Evolution (𝜕𝜕𝜀𝜀) diversifies form.  

 (MIDDLE) The requirement of sufficient dimensions. As scale contractions diversify form, the corresponding branch 
elongations represent time elapse. (BOTTOM) Biological transitions. Representing the nested principle means incorporating 

transition regions into our model of phylogenetic space. The transitions occur as the topological dimension 𝐷𝐷𝑇𝑇 changes from 0 
(that of a point) to 1 (that of a line). These transitions allow for the incorporation of the organism-population duality principle. 



Requirement 4: organism-population duality 
Dynamic phylogenetics is not primarily concerned with the dead. For the dead, ∂t = ∂ε = 0 ⇒
∂ε
∂𝑡𝑡

= 0
0
, and thus, there is no dynamic. Only for the living is ∂𝑡𝑡 ≠ 0 and ∂ε ≠ 0. 

 
The central obstacle to formulating a dynamic phylogenetics lies in the Population-Organism 
duality. The mantra in biology is:  
 

Populations, not organisms, evolve. Selection operates on populations, not individuals 
(Nowak, 2006; or any number of references).  
 

But the living things, the things for which ∂𝑡𝑡 is nonzero, the things generating the growth of the 
tree of life, are organisms. How do we bridge the gap between growth of the organism and 
evolution of the species? We need a unified theory of biology that explains both the growth of 
the organisms and evolution of the species. 
 
The nested principle provides such a bridge by directly incorporating “biological phase 
transitions” into out model of phylogenetic space (Figure 2). A more thorough development of 
these ideas is beyond the scope of this report, and so omitted here. 

Dynamical system 
System description 
The dynamic tree of life is modeled as a stochastic iterated function system, with biological form 
ε assigned to be the scale variable, and time 𝑡𝑡 assigned to be branch lengths/The general idea is 
to generate a random tree using the Galton-Watson branching process, and then to randomly 
scale that tree (this is ε0), where the scale is distributed uniformly on the unit interval. This is the 
first system iterate, and it generates the first tree 𝒯𝒯0 at a scale of ε0. 
 
For each leaf (terminal node) of tree 𝒯𝒯0, a new tree 𝒯𝒯0𝑖𝑖, is generated using the Galton-Watson 
process, and then this new tree is randomly scaled (this is ε0𝑖𝑖), where the scale ε0𝑖𝑖 is distributed 
uniformly over the interval (0, ε0). In other words, every child tree is generated at a scale less 
than the scale of its parent leaf. The new tree 𝒯𝒯0𝑖𝑖 at scale ε0𝑖𝑖 is shifted so that it replaces the leaf 
of tree 𝒯𝒯0. Here 𝑖𝑖 ranges from 1 to the number of leaves in tree 𝒯𝒯0. Figure 3 gives a snapshot of 
the system. 

 
Figure 3 A snapshot of the system showing the nesting of trees within leaves. 

It is claimed that this principle meets the requirement of sufficient dimensions, satisfies the 
random principle, the nested principle, and the has a mechanism, namely transition regions 
where the topological dimension 𝐷𝐷𝑇𝑇 changes from 0 to 1, by which the organism-population 
duality can be approached (see Figure 2). 



 
Equations of motion: stochastic iterated function system 
It seems incorrect to claim that the iterated function system is the “equations of motion”. 
“Motion” here should be understood as the lineage specific change in biological form with 
respect to the change in time, ∂ε

∂𝑡𝑡
. The iterated function system does not by itself obtain for us 

such an expression. It does however, allow us to define metrics 𝑑𝑑ε and 𝑑𝑑𝑡𝑡 on the space generated 
by the IFS. 
 
In this report, I have explained how to obtain the metric 𝑑𝑑ε, from which we can obtain the 
expression ∂ε. The metric of time, 𝑑𝑑𝑡𝑡 from which we would obtain the expression ∂𝑡𝑡, is not 
deduced in this report. Obtaining an expression for 𝑑𝑑𝑡𝑡 is complicated by the multifractal nature 
of the structure. Since the structure is a multifractal, the length of any branch (i.e., the quantity 
Δ𝑡𝑡 or ∂𝑡𝑡) depends on observation scale (i.e., the species from which the measurement is made).  
An expression for ∂𝑡𝑡 is omitted from this report. Therefore, what has been given in this report is 
really half of the dynamic – that is, half of the equations of motion. 
 
Stochastic iterated function system 
Auxiliary functions 
First we need to define two functions, one that returns the root coordinates on the unit square of 
any system subtree, and another that returns the number of leaves in any subtree. 
 
Let 𝑅𝑅: [0,1] × [0,1] ⟶ [0,1] × [0,1] such that 
 

𝑅𝑅 �𝒯𝒯0:𝑖𝑖
� = (𝑎𝑎, 𝑏𝑏), the coordinates of the root node of tree 𝒯𝒯0:𝑖𝑖

. 
 

Let 𝐿𝐿: [0,1] ⟶ ℤ such that 
 

𝐿𝐿 �𝒯𝒯0:𝑖𝑖
� = the number of leaves (terminal nodes) of tree 𝒯𝒯0:𝑖𝑖

, and  
 

Let 𝑙𝑙𝑖𝑖𝑗𝑗 denote the 𝑗𝑗th leaf of tree 𝒯𝒯0:𝑖𝑖
. 

 
Ratio list 
The ratio lists give the scale variables, which are those assigned to biological form. 
For tree 𝒯𝒯0:𝑖𝑖

 in the 𝐾𝐾 − 1th system iterate, the ratio list is given as: 
 

�ε0:𝑖𝑖1
,  … ,  ε0:𝑖𝑖

𝐿𝐿�𝒯𝒯0:𝑖𝑖
𝐾𝐾−1�

� 

 
Where each ε0:𝑖𝑖𝑗𝑗

 is a random variable with ε0:𝑖𝑖𝑗𝑗
∼ 𝑈𝑈 �0, 𝜀𝜀0:𝑖𝑖

�, and ε1 ∼ 𝑈𝑈(0,1).  



Function list 
The leaves 𝑙𝑙𝑖𝑖𝑗𝑗  of tree 𝒯𝒯0:𝑖𝑖

 in the 𝐾𝐾th system iterate 𝐸𝐸𝐾𝐾, are comprised of 𝐿𝐿 �𝒯𝒯0:𝑖𝑖
𝐾𝐾−1� executions of 

function 𝑇𝑇0:𝑖𝑖𝑗𝑗

𝐾𝐾 : 

�𝑇𝑇0:𝑖𝑖1

𝐾𝐾 , … ,𝑇𝑇0:𝑖𝑖
𝐿𝐿�𝒯𝒯0:𝑖𝑖

𝐾𝐾−1�

𝐾𝐾 � 

 
Where 𝑖𝑖 ∈ ℤ with range 1 ≤ 𝑖𝑖 ≤ 𝐿𝐿(𝒯𝒯𝐾𝐾−1) 
 
Here, 𝑇𝑇0:𝑖𝑖𝑗𝑗

𝐾𝐾 : [0,1] × [0,1] ⟶ [0,1] × [0,1] is given by: 

𝑇𝑇0:𝑖𝑖𝑗𝑗

𝐾𝐾 = 𝒁𝒁 ∗ 𝜀𝜀0:𝑖𝑖𝑗𝑗
+ ||𝑅𝑅 �𝑇𝑇0:𝑖𝑖𝑗𝑗

𝐾𝐾 � − 𝑙𝑙𝑖𝑖𝑗𝑗 ||2 , 𝑙𝑙𝑖𝑖𝑗𝑗 ∈ 𝒯𝒯0:𝑖𝑖
𝐾𝐾−1 

 
Where 𝒁𝒁 is a sequence generated by the Galton-Watson branching process: 
 

𝑍𝑍𝑝𝑝+1 = �
ξ1
𝑝𝑝+1 + ⋯+ ξ𝑍𝑍𝑝𝑝

𝑝𝑝+1, 𝑍𝑍𝑝𝑝 > 0
0, 𝑍𝑍𝑝𝑝 = 0

 

 
With ξ𝑟𝑟

𝑝𝑝 ∈ ℤ 𝑖𝑖. 𝑖𝑖.𝑑𝑑. Nonnegative random variables, and 𝑝𝑝, 𝑟𝑟 ≥  0. 
 
Description of model correctness 
The trees generated by the Galton-Watson process capture the stochasticity of biological 
branching processes. Since branch lengths give time intervals, and since the scale variable ε is 
also a random variable, the model captures the stochasticity of evolutionary change. That is, the 
model generates a system in which form is randomly diversified in time and in magnitude, while 
still maintaining lineage-specific characteristics. 

Methods 
The iterated function system was simulated using MATLAB R2020b. The maximum offspring 
and the maximum generations for the Galton-Watson process were each set to five. Since the 
systems tend to blow up fast, only seven iterations were executed.  
 
Since each 𝜀𝜀0:𝑖𝑖𝑗𝑗

is a random variable with 𝜀𝜀0:𝑖𝑖𝑗𝑗
∼ 𝑈𝑈 �0, 𝜀𝜀0:𝑖𝑖

�, we have that 𝜀𝜀0:𝑖𝑖𝑗𝑗
<  𝜀𝜀0:𝑖𝑖

 for all 𝜀𝜀:. 

Therefore, we have: 
 

P�ℰ0:ℎ𝑖𝑖𝑗𝑗
= 𝜀𝜀0:ℎ𝑖𝑖𝑗𝑗

�ℰ0:ℎ𝑖𝑖
= 𝜀𝜀0:ℎ𝑖𝑖

,ℰ0:ℎ
= 𝜀𝜀0:ℎ

, … ,ℰ0 = 𝜀𝜀0� = 𝑃𝑃 �ℰ0:ℎ𝑖𝑖𝑗𝑗
= 𝜀𝜀0:ℎ𝑖𝑖𝑗𝑗

�ℰ0:ℎ
= 𝜀𝜀0:ℎ

�. 

 
So every path in the system is a Markov chain with respect to the scale variable ε. 
 



Entropy calculations 
Since the scale random variable ε0:ij

 is distributed uniformly over (0, ε0:𝑖𝑖
), the entropy is simply: 

 
𝐻𝐻 �𝜀𝜀0:𝑖𝑖𝑗𝑗

� = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝜀𝜀0:𝑖𝑖
�. 

 
Pathwise joint entropy calculations 
The probability of child tree given the parent node is: 
 

𝑃𝑃 �𝜀𝜀0:𝑖𝑖𝑗𝑗
�𝜀𝜀0:𝑖𝑖

� =
𝑃𝑃 �𝜀𝜀0:𝑖𝑖𝑗𝑗

�

𝑃𝑃 �𝜀𝜀0:𝑖𝑖
�

 

 
Therefore, the pathwise joint entropy is given by: 
 

𝐻𝐻 �𝜀𝜀0:𝑖𝑖𝑗𝑗
, 𝜀𝜀0:𝑖𝑖

� = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜀𝜀0:𝑖𝑖𝑗𝑗

𝜀𝜀0:𝑖𝑖

� 

 
Pathwise mutual information calculations 
From the entropy expressions, pathwise mutual information is given as: 
 

𝐼𝐼 �𝜀𝜀0:𝑖𝑖𝑗𝑗
; 𝜀𝜀0:𝑖𝑖

� = 𝐻𝐻 �𝜀𝜀0:𝑖𝑖𝑗𝑗
� + 𝐻𝐻 �𝜀𝜀0:𝑖𝑖

� − 𝐻𝐻 �𝜀𝜀0:𝑖𝑖𝑗𝑗
, 𝜀𝜀0:𝑖𝑖

�. 

 
Local channel capacity calculations 
A “local channel” is a transition along a lineage from a leaf to a tree. (A “global channel” is a 
transition from system-wide iteration 𝐾𝐾 to 𝐾𝐾 + 1.) Figure 4 depicts a local channel. 

 
Figure 4 Local channel capacity. The leaf 𝑖𝑖 expands to a tree 𝒯𝒯𝑖𝑖𝑗𝑗. 

This is also the expression for the local channel capacity 𝒞𝒞𝑖𝑖𝑖𝑖 since 
 

𝑚𝑚𝑎𝑎𝑥𝑥
𝑝𝑝�𝜀𝜀0:𝑖𝑖𝑗𝑗

�
𝐼𝐼 �ℰ0:𝑖𝑖𝑗𝑗

;  ℰ0:𝑖𝑖
�  =  𝐼𝐼 �𝜀𝜀0:𝑖𝑖𝑗𝑗

, 𝜀𝜀0:𝑖𝑖
�. 

 
To normalize the channel capacities by the number of leaves produced, the local channel 
capacity density is given as: 

𝜌𝜌𝑖𝑖𝑖𝑖 = 𝒞𝒞𝑖𝑖𝑗𝑗
𝐿𝐿�𝒯𝒯𝑖𝑖𝑗𝑗�

. 



Cross-path joint entropy calculations 
In addition to calculating the pathwise information measures, it is also desirable to calculate the 
mutual information and information distance between any two leaves in the system – that is, 
between two leaves that have an arbitrarily distanced common ancestor (Figure 5). 
 

 
Figure 5 If 𝑖𝑖 and 𝑗𝑗 are any two leaves in the system, their mutual information and information distance can be determined. 

Information distance 𝑑𝑑𝜀𝜀 ultimately will be used as the metric of biological form (see Figure 1). 

To calculate the joint cross-path entropy calculations (i.e., the entropy between any two leaves in 
the system) we must determine the joint probability of the scale variables of each leaf. This 
probability is given as:  

𝑃𝑃 �ε0:i:j
, ε0:i:k

� = 𝑃𝑃 �ε0:i:j
, ε0:i:k

�𝜀𝜀0:𝑖𝑖
� = 𝑃𝑃 �ε0:i:j

�𝜀𝜀0:𝑖𝑖
� ∩ 𝑃𝑃 �ε0:i:k

�𝜀𝜀0:𝑖𝑖
� =

𝑃𝑃�ε0:i:j
�

𝑃𝑃�𝜀𝜀0:𝑖𝑖
�
∩

𝑃𝑃�ε0:i:k
�

𝑃𝑃�𝜀𝜀0:𝑖𝑖
�

. 

 
Therefore, the cross-path joint entropy is calculated as: 
 

𝐻𝐻 �ε0:i:j
, ε0:i:k

� = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑚𝑚𝑖𝑖𝑚𝑚 �
ε0:i:j

𝜀𝜀0:𝑖𝑖

,
ε0:i:k

𝜀𝜀0:𝑖𝑖

��  

 
Cross-path mutual information calculations 
Just as in the pathwise case, the cross-path mutual information between any two leaves is 
calculated as: 

𝐼𝐼 �ε0:i:j
; ε0:i:k

� = 𝐻𝐻 �ε0:i:j
� + 𝐻𝐻 �ε0:i:k

� − 𝐻𝐻 �ε0:i:j
, ε0:i:k

�  

 
Cross-path information distance calculations 
The cross-path information distance is given by: 
 

𝑑𝑑ε �ε0:i:j
, ε0:i:k

� = 𝐻𝐻 �ε0:i:j
, ε0:i:k

� − 𝐼𝐼 �ε0:i:j
; ε0:i:k

�. 



Example Results 
Pathwise results 
Figure 6 gives example information measure results for a system with seven iterations resulting 
in 20,643 leaves in the final iterate. 
 

 
Figure 6 (LEFT COLUMN) The top plot gives the scale variable for each of the 20,646 paths in the system, and the bottom plot 
gives the distribution. (MIDDLE COLUMN) The top plot gives the entropy values for all 20,646 paths in the system, and the 
bottom plot gives their distribution. (RIGHT COLUMN) The top plot gives the pathwise mutual information (i.e., mutual 
information between parent leaf and child tree) for all 20,646 paths in the system, and the bottom plot gives their distributions. 

Figure 7 gives example channel capacity density results for a system of seven iterations with 
4,430 leaves, 1,018 trees in the final iterate. 
 

 
Figure 7 (LEFT) Channel capacity densities for all 4,430 system paths. (MIDDLE) Average channel capacity densities along 
paths to tree in final iterate. The sharp drop around the 1000th tree indicate the section of the system that is evolutionarily 
conserved. (RIGHT) Distribution of the channel capacity densities for all 4,430 system paths. 

Cross-path results 
Cross-path mutual informations and cross-path information distances were calculated by forming 
all pairwise combinations for a system of 6,616 leaves in the final seventh iterate. Histograms 
were then generated to see the distributions. Figure 8 gives the result for the mutual 
informations, and Figure 9 gives the result for the information distances. 



 
Figure 8 Mutual information for all pairwise combinations of 6,616 leaves in the final seventh iterate. Self-comparisons are 

omitted.  

 
Figure 9 All unique pairwise combinations of information distances for 6,616 leaves in the final seventh iterate. Self-comparisons 

are omitted.  

Conclusion 
The system developed in this report accomplishes the tasks it set out to accomplish. A space with 
sufficient dimensions, that is both biological form and time, was constructed. The system is 
stochastic, satisfying the random principle. The system also satisfies the nested principle, thereby 
giving meaning to the assignment of biological form ε to scale. In doing so, the system provides 
a path forward for dealing with the organism-population duality principle. This path forward 
comes from the transition regions inherent in the system and their corresponding changes in 
topological dimension. The result is a system on which information measures can be clearly 
defined and calculated. The information measures allow for the metric of biological form to be 
defined as the information distance between scale variables of leaves. 



 
The metric of time was not dealt with in this report. The multifractal nature of the structure 
means that such a metric must be a function of scale. In order to develop such a metric, the 
spectrum of fractal dimensions across the structure must first be attained. Determining this 
spectrum and the metric of time are the future directions of the project. 
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