# What does the tree of life look like as it grows?

Toward a dynamic theory of phylogenetic space

Kevin Hudnall

**Biosystems Engineering Graduate Group** 

# Dimensions of phylogenetic space



These are **static trees**. We have the quantities  $\Delta t$  and  $\Delta \varepsilon$ , but not  $\partial t$  and  $\partial \varepsilon$ .

Chronograms and phylograms are individually inadequate to model the dynamic case

# Requirement of sufficient dimensions:



That is, to represent the dynamic  $\frac{\partial \varepsilon}{\partial t}$ , we must **combine chronograms and phylograms**.

# Requirements of a dynamic model

- Sufficient dimensions for the dynamic  $\frac{\partial \varepsilon}{\partial t}$
- The random principle
  - The foundation of modern biology
- The nested principle
  - The logical structure of descent-with-modification
- The organism-population duality principle

> Mantra in biology: "populations, not organisms, evolve".



A species tree is the **convex hull** of a genus node.

# Hint: a tree is not needed if only one metric



A tree in  $\mathbb{R}^2$  with only one metric can be reduced to  $\mathbb{R}$  if we utilize scale. (Think random Cantor dust)

# Approach: assign one variable to scale, the other to branch length

Form  $\varepsilon \rightarrow$  scale Time t  $\rightarrow$  branch length Evolution  $\partial \varepsilon \rightarrow$  scale contraction Time expansion  $\partial t \rightarrow$  branch elongation

100



 $\uparrow \partial t \neq 0$ 



# The model: trees within trees within trees...

 $\partial \varepsilon_{\cdot,i}$  : path-specific contraction on the unit square to extant/living leaf  $\partial t_{\cdot,i}$  : path-specific branch elongation  $\partial \varepsilon_{\cdot,i}$  $\frac{\partial \varepsilon}{\partial t}$ 

٠

# Stochastic Iterated Function System

#### Auxiliary functions

Let  $R: [0,1] \times [0,1] \rightarrow [0,1] \times [0,1]$  such that

 $R(\mathcal{T}_{0_{\dots}}) = (a, b)$ , the coordinates of the root node of tree  $\mathcal{T}_{0_{\dots}}$ .

Let  $L: [0,1] \rightarrow \mathbb{Z}$  such that

 $L(\mathcal{T}_{0_{\cdots_{i}}}) =$  the number of leaves (terminal nodes) of tree  $\mathcal{T}_{0_{\cdots_{i}}}$ , and

Let  $l_{i_j}$  denote the *j*th leaf of tree  $\mathcal{T}_{0_{...}}$  .

Ratio list:

For tree  $\mathcal{T}_{0, \ldots, i}$  in the  $K - 1^{\text{th}}$  system iterate:  $\begin{pmatrix} \varepsilon_{0, \ldots, i}, & \ldots \in \varepsilon_{0, \ldots, i} \\ & & \downarrow_{L}(\mathcal{T}_{0, \ldots, i}^{K-1}) \end{pmatrix} \text{ Assigned to biological form}$ Where each  $\varepsilon_{0, \ldots, i_{j}}$  is a random variable with  $\varepsilon_{0, \ldots, i_{j}} \sim U(0, \varepsilon_{0, \ldots, i_{j}})$ , and  $\varepsilon_{1} \sim U(0, 1)$ . Function list:

The leaves  $l_{i_j}$  of tree  $\mathcal{T}_{0_{\underbrace{i_i}}}$  in the  $K^{\text{th}}$  system iterate  $E_K$ , are comprised of  $L\left(\mathcal{T}_{0_{\underbrace{i_i}}}^{K-1}\right)$  executions of function  $T_{0_{\underbrace{i_i}}}^K$ :

$$\begin{pmatrix} T_{0}^{K}, \dots, T_{0}^{K} \\ & \ddots \\ & & \cdot \\ & & \cdot \\ & & \cdot \\ & & \cdot \\ & & & \cdot \\ \end{pmatrix}$$

Where  $i \in \mathbb{Z}$  with range  $1 \leq i \leq L(\mathcal{T}^{K-1})$ 

Here,  $T_{0}^{K}_{\cdot \cdot i_{j}}$ :  $[0,1] \times [0,1] \to [0,1] \times [0,1]$  is given by:

$$T_{0_{\cdots i_{j}}^{K}}^{K} = \mathbf{Z} \ast \varepsilon_{0_{\cdots i_{j}}} + ||R\left(T_{0_{\cdots i_{j}}^{K}}\right) - l_{i_{j}}||_{2}, l_{i_{j}} \in \mathcal{T}_{0_{\cdots i_{j}}^{K-1}}^{K-1}$$

GW Scale ShiftWhere Z is a sequence generated by the Galton-Watson branching process:

| $Z_{p+1} = \cdot$ | $\begin{cases} \xi_1^{p+1} + \dots + \xi_{Z_p}^{p+1}, \\ 0, \end{cases}$ | $Z_p > 0$ $Z_p = 0$ | Static<br>approximation<br>tree |
|-------------------|--------------------------------------------------------------------------|---------------------|---------------------------------|
|-------------------|--------------------------------------------------------------------------|---------------------|---------------------------------|

With  $\xi_r^p \in \mathbb{Z}$  *i*. *i*. *d*. Nonnegative random variables, and  $p, r \ge 0$ .

# Every scale path $\varepsilon_{i_j}$ is a Markov chain

Each 
$$\varepsilon_{i_j}$$
 is a random variable with  $\varepsilon_{i_j} \sim U(0, \varepsilon_{i_j})$ , and  $\varepsilon_1 \sim U(0, 1)$ . So  $\varepsilon_{i_j} < \varepsilon_{i_j}$  for all  $\varepsilon_{\#}$ 

$$\Pr\left(\mathcal{E}_{0,\dots,h_{i_{j}}}=\varepsilon_{0,\dots,h_{i_{j}}}\middle|\mathcal{E}_{0,\dots,h_{i_{j}}}=\varepsilon_{0,\dots,h_{i_{j}}},\mathcal{E}_{0,\dots,h_{i_{j}}}=\varepsilon_{0,\dots,h_{i_{j}}}\right)=\Pr\left(\mathcal{E}_{0,\dots,h_{i_{j}}}=\varepsilon_{0,\dots,h_{i_{j}}}\middle|\mathcal{E}_{0,\dots,h_{i_{j}}}=\varepsilon_{0,\dots,h_{i_{j}}}\right)$$



Therefore, the entropy is:

$$\mathbf{H}\begin{bmatrix} \boldsymbol{\varepsilon}_{\cdot i_{j}} \end{bmatrix} = \log\left(\boldsymbol{\varepsilon}_{\cdot \cdot i_{j}}\right) \leq \mathbf{0}$$

# Comparing information measures

•

# Example results: 7 iterations, 20643 extant leaves



# Example results: Local channel capacity densities $i - \text{Local channel} \rightarrow j$ Channel capacity: $C_{ij} = \max_{p(\varepsilon_{0,i_{j}})} I[\varepsilon_{0,i_{j}}; \varepsilon_{0,i_{j}}] = H[\varepsilon_{0,i_{j}}] + H[\varepsilon_{0,i_{j}}] - H[\varepsilon_{0,i_{j}}, \varepsilon_{0,i_{j}}] = \log(\varepsilon_{0,i_{j}}) + \log(\varepsilon_{0,i_{j}}) - \log(\frac{\varepsilon_{i,i_{j}}}{\varepsilon_{i,i_{j}}})$

Channel capacity density:

$$\rho_{ij} = \frac{c_{ij}}{L(\tau_{ij})}$$

#### 7 iterations, 4,430 extant leaves, 1,018 trees in 7<sup>th</sup> iterate



# Mutual information and information distance:

How do extant leaves relate?



Assign information distance  $d_{\varepsilon}$  to be the metric of biological form.

#### Example results: cross-path mutual information

All unique pairwise combinations of mutual information for 6,616 extant leaves (7 iterations)



# Example results: cross-path information distance

All unique pairwise combinations of information distance for 6,616 extant leaves (7 iterations)



Interested in:



All unique pairwise combinations of  $\frac{l}{d_{\varepsilon}}$  for 6,616 extant leaves (7 iterations)



The metric 
$$d_t(\varepsilon_i, \varepsilon_j)$$
? For another day

Multifractal structure  $\Rightarrow$  not a simple task



