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Abstract 
 
Reinforcement learning is a highly general problem which is considered the ultimate goal of 
artificial intelligence research. Here, I apply e-Machines to model-based reinforcement learning 
by treating the system-agent interaction as a single dynamic and consider how policy changes 
can induce new overall dynamics. I develop a simple algorithm for optimizing an agent’s policy.  
 
Introduction 
 
Before the 20th century, scientists assumed that observers were independent of the system being 
studied. However, parallel developments in quantum mechanics and chaos theory call into 
question this idealization. The sensitivity of these systems with respect to the actions of the 
observer fundamentally changes how we should think about them. Situations where the observer 
has a strong influence on the system call into question what it means to “understand” the system 
separate from its observer. Rather, the observer can now ask how they should act when 
interacting with the system. In this case, the observer is perhaps better described as an agent. 
 
Here, I examine how we can apply the e-Machine formalism [1] to reinforcement learning 
problems. By considering the agent to be a part of the system under study, we can then model the 
agent-system dynamics as an e-Machine, which provides a model for how adjusting the agent’s 
policy changes the resulting dynamics. By comparing the asymptotic behavior of the agent-
system pair under different policies, we can choose the policy which maximizes the probability 
of observing sequences that the agent prefers. 
 
This report is structured as follows. First, I review progress in the field of reinforcement learning. 
Next, I explain how to adapt the existing e-Machine approach to a reinforcement learning 
problem. Afterwards, the Policy Counterfactuals section reviews several intuitive examples of 
how an agent can adjust their policy to change the overall dynamics. The Policy Optimization 
section extends this by specifying the overall approach to RL using e-Machines and identifies a 
simple algorithm to select a good policy. Finally, I consider an application of this approach to a 
simple system and conclude. 
 
Background: Reinforcement Learning 
 
Reinforcement learning (RL) is a mature field examining how artificial agents should pursue 
their goals in a variety of environments. The problem of developing general, capable 
reinforcement learners is considered one of the most important steps towards creating an 
artificial intelligence and has applications to many fields such as robotics, high-throughput 
experimentation, and control systems.  



 
A typical RL problem consists of four components: 

1. A set of possible observed states 
2. A set of possible actions the agent can take 
3. A utility function which maps observed states to utilities 
4. A policy which selects actions conditional on past observations and actions 

 
The goal of any reinforcement learning algorithm is to find a policy which maximizes total 
utility. A significant amount of research examines different algorithms for finding good policies 
in a variety of environments. It can be generally divided amongst model-free and model-based 
approaches.  
 
Model-free approaches do away with an explicit model for their environment and attempt to find 
an optimal policy empirically. Q-learning [2] is a commonly used model-free RL technique. It 
involves tabulating the average reward obtained from different combinations of states and 
actions and then selecting the best-performing action in each state. Though this avoids making 
assumptions about the environment, Q-learning can be quite slow to converge, requires a lot of 
data, and performs poorly in environments with a large state-space. 
 
Model-based approaches rely on some theory of system-agent interaction in order to select 
policies. Adaptive dynamic programming (ADP) is a good example of model-based RL [3]. It 
constructs a model of how states and actions induce transitions to other states and learns the 
utilities of these states. This constructed model is a Markov decision process which can then be 
solved using dynamic programming techniques. Like with Q-learning, ADP has difficulties 
handling complicated environments, however, ADP often has faster convergence than Q-learning 
since it can use its model of the environment to identify good policies. 
 
Both model-free and model-based approaches have been used to control drones [4], play games 
[5], and complete many other tasks. Despite the success of current RL approaches and large body 
of literature, I believe the e-Machine approach demonstrated here offers several advantages. 
First, studying the application of e-Machines to reinforcement learning can provide better 
information-theoretic foundations of RL and potentially help create new RL algorithms with 
improved performance. Second, the system-agent model extends the study of e-Machines to 
situations where the observer is a part of the system under study, which may produce new 
concepts applicable to decision theory and the study of quantum systems. Third, the e-Machine 
approach finds a parsimonious representation of the overall dynamics and naturally defines the 
different states of the system instead of requiring the user to define the states themselves. Both of 
these properties can significantly improve existing RL techniques.  
 
Previously, e-Machines have been used to study interactive learning, a problem similar to RL 
which eschews rewards and instead seeks to maximize the predictive power of the agent via the 
policy [6]. As such, this strategy is limited to agents which seek to control the system in a very 
particular way. This is distinct from the approach discussed here as we aim to learn policies for 
agents with arbitrary goals. 
 
 



Applying e-Machines to the RL problem 
 
Readers may notice a conflict between the e-Machine formalism and the RL problem. e-
Machines take only a single history of observations, while the RL problem has two distinct 
streams inputs: the sequence of observations and the sequence of selected actions. We must 
reconcile this difference if we are to apply the e-Machine approach to RL problems. 
 
Fortunately, there is a simple solution. Since we are considering the system-agent dynamic 
holistically, we can combine the history of observations and the history of actions by inserting 
the agent’s “action symbols” into the system’s history at regular intervals. This new sequence 
describes the system-agent dynamics and can itself  be modeled as an e-Machine. This new e-
Machine determines how histories of system output symbols and agent actions combine to 
produce future system output symbols and actions.  
 

 
Figure 1. The agent observes system dynamics and outputs a symbol sequence corresponding to its actions at each timestep. 

Adapted from Physics of Computation and Information, Lecture 22, Slide 4. 

 
With the system-agent e-Machine constructed, we can now ask what control the agent has over 
the e-Machine. By looking at the agent’s history of action symbols and the outputs of previous 
causal states, the agent can identify which causal states it controls. For example, if the agent 
remembers that it emitted a ‘1’ symbol ten times in a row, the agent can look back on the history 
and find which causal state also emitted a ‘1’ symbol the last ten times it was visited. This 
indicates that the agent controls the output of this causal state in the e-Machine. 
 
Knowing the role the agent plays in the overall dynamics, we now turn to the question of how 
changes to the policy change the resulting e-Machine. 
 
Policy Counterfactuals 
 
There are two ways an agent can consider changes to its policy, using only the inferred e-
Machine.  
 
First, since the agent knows which causal states it controls, it can consider fixing the output of 
these states, which has the effect of “pruning” the e-Machine by removing an outgoing transition 



from one of these states (Fig 2b). Second, the agent can select certain outputs conditional on the 
causal state and the previous output symbol (Fig 2c). This has the effect of “budding” a causal 
state that the agent controls into separate causal states, one for each subset of symbols that the 
agent treats differently. 
 
To make these ideas more concrete, we can apply these concepts to a simple example. Let’s 
consider a process where first bit is random, the second bit is controlled by our agent, and the 
third bit is a copy of the agent’s bit. 
 
Under a random policy, the system-agent interaction is described by the e-Machine in Figure 2a. 
The agent knows that they control causal state B. The agent can prune the outputs of state B to 
only emit the ‘0’ symbol leading to the e-Machine in Figure 2b. Alternatively, the agent can bud 
causal state B into states B and C, conditional on the incoming symbol, resulting in the e-
Machine in Figure 2c. 
 

 
Figure 2. A) Random policy. B) Pruning the output of state B. C) Budding state B into two causal states. 

 
 
Policy Optimization 
 
We can now specify the overall approach to RL using e-Machines. First, the agent pursues a 
random policy and observes the system-agent dynamics. Next, the agent infers the overall e-
Machine corresponding to these dynamics and identifies which causal states it controls. With this 
knowledge, the agent can then derive the e-Machines resulting from different policies. The best 
policy induces an e-Machine with the most favorable asymptotic word distribution. 
 
But selecting an optimal policy is not as simple as it sounds. Note that if an agent controls 𝑁 
causal states with 𝑎 possible output symbols (actions), then there are 𝑂(𝑎%) different possible e-
Machines the agent can produce by pruning alone. This exponential dependence on the number 
of controlled causal states makes it infeasible to evaluate the impacts of all policies. Instead, a 
simple algorithm which finds a good (as opposed to optimal) policy is of practical necessity. 
 



Greedy algorithms are a good option when facing a task with a large search space where working 
solutions will suffice. The problem of choosing a policy on an e-Machine is naturally suited to a 
greedy approach and can be pursued as follows.  
 
First, the agent selects a starting controlled causal state. Next, they “bud” or split this causal state 
into several states conditional on the different incoming symbols to this state. Then, they iterate 
through each of these budded states and consider pruning different output symbols. If a pruning 
improves the asymptotic word distribution, it is kept, otherwise, it is rejected. After iterating 
through all of the buds, some of the causal states will have the same incoming and outgoing 
transitions, and can be combined. Once this process is complete, the agent moves to the next 
controlled causal state in the e-Machine, starting with states close to the initial state and then 
moving to causally downstream states, repeating the budding and pruning process. 
 
In the next section, I apply this model-based RL algorithm to an example problem. 
 
Demonstration  
 
With the fundamental approach to RL using e-Machines specified, we can consider a 
demonstration on a simple system.  
 
Let’s consider a system of four repeating bits where the first bit is random, the second is 
controlled by the agent, the third is random, and the fourth is controlled by the agent. For the 
purposes of this example, we assume that the agent seeks to maximize the probability of 
observing the ‘0000’ and ‘1111’ strings. Starting with a random policy, the agent will identify 
the presentation in Figure 3a. The agent then begins with controlled causal state B by budding it 
into states B and C conditional on the incoming symbols, resulting in Figure 3b. Next, the 
outputs from B and C are each pruned to maximize the probability of observing the ‘0000’ or 
‘1111’ strings, resulting in Figure 3c. 
 

 
Figure 3. A) Random policy. B) Budding state B into two causal states. C) Pruning the output of states B and C. 

 



With the policy adjustments at state B complete, we can now examine how to change the policy 
at state E. Figure 4a reproduces Figure 3c for clarity. We start by budding causal state E by into 
states E and F conditional on the incoming symbols, resulting in Figure 4b. Next, the outputs 
from E and F are each pruned to maximize the probability of observing the ‘0000’ or ‘1111’ 
strings, resulting in Figure 4c. 
 
 

 
Figure 4. A) Reproduction of Figure 3c. B) Budding state E into two causal states. C) Pruning the output of states E and F. 

 
Conclusion 
 
There are several promising routes by which this work could be extended. First, new algorithms 
for inference, larger memory policies, and better policy selection algorithms would greatly 
improve performance. Second, determining the formal relationship between the complexity of 
the optimal policy and the complexity of the system might provide a new grounds for proving the 
Good-Regulator Theorem [7]. Third, extending this model to consider multiple agents interacting 
with a system could capture interesting phenomena from game theory and evolutionary 
dynamics. 
 
Overall, this approach presents a promising new method for model-based RL. By inserting 
symbols associated with action sequences into the observed history, the agent can model the 
dynamics of their interaction with a system as an e-Machine and consider how changes to the 
policy change the overall dynamics. Contrast this with model-free approaches which are 
characterized by numerous incremental updates to the policy, leading to slow adaptation to new 
environments and slow convergence to a good policy. By directly modelling the impact of 
changes to the policy, the agent can immediately jump to a good strategy, and quickly adapt if 
the dynamic changes. Additionally, unlike other model-based approaches, the e-Machine 
approach automatically defines the states of the system and minimizes the number of states, 
which should accelerate convergence to good policies. 
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