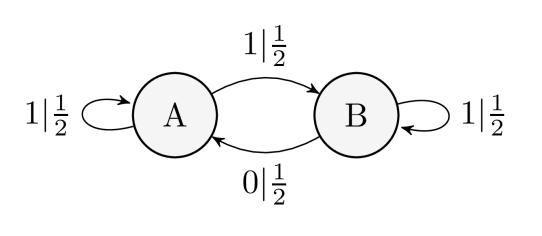
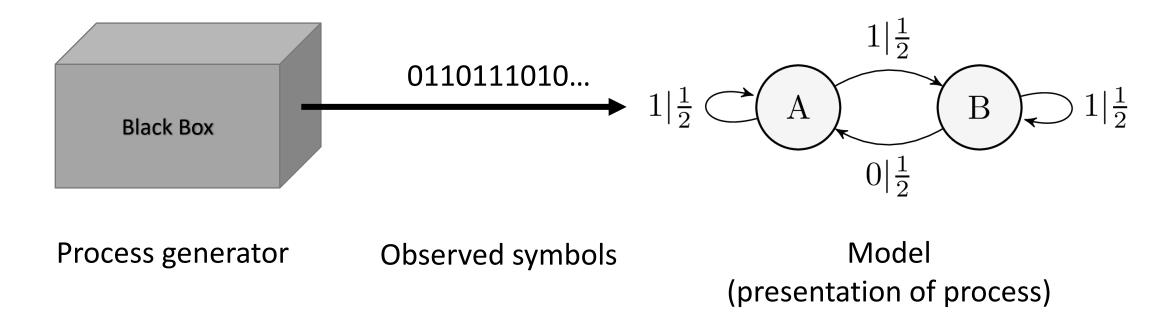
Desynchronization in Nonunifilar Hidden Markov Models

Jacob Hastings



General Setup



- Before any symbols are observed, the current model state is unknown (asymptotic state distribution)
- Each time a symbol is observed, update the state distribution

Notation & Conventions

Model states (not causal): S_t, s_t

Observed symbols: X_t, x_t

Sequences: $X_{a:b} = X_a X_{a+1} X_{a+2} \dots X_{b-1}$

Time ordering: $S_t \xrightarrow{X_t} S_{t+1}$

Notation & Conventions

Synced state distribution ("pure"): $\langle e_i| = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$

General state distribution ("mixed"): $\langle \mu(x_{0:t}) |$

$$\langle \mu(x_{0:t})|e_i\rangle = \Pr(S_t = i|X_{0:t} = x_{0:t})$$

Sync vs. Desync

Synchronization

- Initially unsynced: $\langle \mu(\lambda)| = \langle \pi|$ $H[\mu(\lambda)] > 0$
- At some *L*, $H[\mu(x_{0:L})] = 0$
- Unifilar: $H[\mu(x_{0:t})] = 0 \quad \forall t \geq L$

Desynchronization

- Initially synced: $\langle \mu(x_{0:L})| = \langle e_i|$ $H[\mu(x_{0:L})] = 0$
- At some K > L, $H[\mu(x_{0:K})] > 0$
- Unifilar: Never happens

Interested in models that can sync and desync --- Nonunifilar*

Desync Properties: Desyncing Words

Set of minimal desynchronizing words for state $s\colon \mathcal{L}_{\mathrm{desync}}(s)$

For $w \in \mathcal{L}_{desync}(s)$:

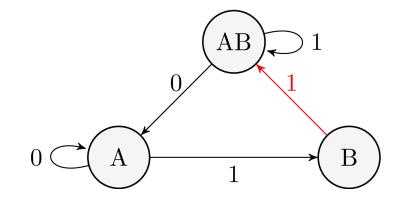
- $H[\mu(w)|S_0=s]>0$
- ullet No prefix of w is also a desynchronizing word

Desync Properties: Desyncing Words

Model

$0 \bigcirc A \bigcirc B \bigcirc 1$

Power automaton



$$\mathcal{L}_{\text{desync}}(A) = \{0^n 11 | n \in \mathbb{N}_0\}$$

$$\mathcal{L}_{\text{desync}}(B) = \{1\}$$

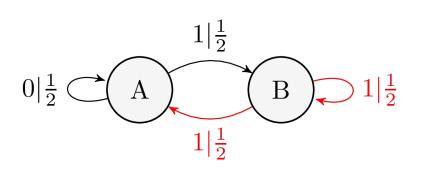
Desync Properties: Desync Risk

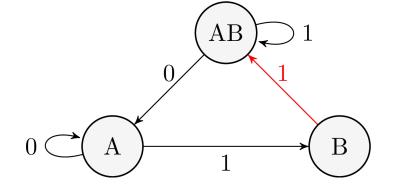
Desynchronization risk at time t: $\Upsilon(s,t)$

$$\Upsilon(s,t) = \sum_{w \in \mathcal{L}_{\text{desync}}(s,t)} \Pr(X_{0:t} = w | S_0 = s)$$

$$\mathcal{L}_{\text{desync}}(s,t) = \{ w \in \mathcal{L}_{\text{desync}}(s) \mid |w| = t \}$$

Desync Properties: Desync Risk





$$\mathcal{L}_{\text{desync}}(A) = \{0^n 11 | n \in \mathbb{N}_0\}$$

$$\Upsilon(A,0) = 0$$

$$\Upsilon(A,1) = 0$$

$$\Upsilon(A,t) = \langle e_A | \left(T^{(0)} \right)^{t-2} \left(T^{(1)} \right)^2 | 1 \rangle = 2^{1-t} \text{ for } t \ge 2$$

Desync Properties: Desync Risk

Since desynchronization is only ever caused by nonunifilar transitions, can calculate risk without $\mathcal{L}_{ ext{desync}}(s,t)$

$$\Upsilon(s,t) = \sum_{w \in \mathcal{L}_{desync}(s,t)} \Pr(X_{0:t} = w | S_0 = s)$$

$$\stackrel{?}{=} \sum_{s' \in N} \sum_{x \in \mathcal{L}_{desync}(s',1)} \Pr(S_{t-1} = s', X_{t-1} = x | S_0 = s)$$

$$\stackrel{?}{=} \sum_{s' \in N} \sum_{x \in \mathcal{L}_{desync}(s',1)} \sum_{s''} T_{s's''}^{(x)} (T^{t-1})_{ss'}$$

where *N* is the set of nonunifilar states

Open Questions

- Other relevant quantities?
 - Desynchronization order
 - Average desynchronization time
- Applications?
 - Quantum
 - Information engines
- Resynchronization (sync after desync)?
 - Synchronization dynamics?

Thank you!

Questions?