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Abstract:  Electroactive bacteria are a group of microorganisms with unique physiological features 
related to their electron transport chains, and often form multi-cellular conductive biofilms.  Conductive 
biofilms are the basis of emerging technologies such as Microbial Fuel Cells and Microbial 
Electrosynthesis which are promising means to mitigate climate change and ensure security and access to 
clean water and feedstock chemicals upon which the production of most consumer goods depends. While 
the establishment of distinct phenotypic lineages and division of labor has been observed in conductive 
biofilms, little is known about how environmental fluctuations influence this process.  Electroactive 
bacteria are ideal organisms for the exploration of general questions concerning how bacteria model and 
respond to environmental fluctuations due to the ability to control their redox environment by modulating 
the voltage of electrodes to which they are electrochemically connected. The following is a report on the 
development status of a stochastic model of electroactive bacteria responding to environmental 
fluctuations and corresponding experiments.  The long-term goal is to determine if and how predictability 
of the local redox environment affects the epigenome of electroactive bacteria, how this determines their 
phenotypic distribution, maximal expected log-growth rate, and to use these findings to improve the 
design of microbial electrochemical technologies.  Such a project has the potential to not only improve 
performance of technologies based on electroactive microbes, but to test theoretical results from 
computational mechanics concerning information processes in bacteria. 
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Introduction  

The current water-energy-food-climate (WEFC) system is unsustainable given humanities current modes 
of production, consumption, and resource stewardship [1].  A related crisis facing modernized economies 
is the exhaustion of fossil-fuel based feedstock chemicals currently relied upon for the production of 
plastics, rubber, textiles, and a wide variety of other goods and materials [2].  The use of biomass derived 
feedstocks as substitutes for fossil fuels competes for land and food production, exacerbating the stress 
upon the WEFC system.  Inventive technological solutions are needed to mitigate looming crises as the 
effects of resource scarcity and climate change manifest themselves. Microbial Electrochemical 
Technologies (METs) are among the most promising solutions to confront problems facing the WEFC 
system.  Microbial electrochemical technologies represent a new paradigm for the production of energy, 
fuels, chemicals, and sources of protein from waste streams.  Wastewater treatment plants are particularly 
attractive sites for incorporation of these technologies due to their ability to act as resource banks from 
which these fuels, chemicals, and proteins can be manufactured, with the possibility to power these 
processes through onsite energy generation from wastewater [3].  Wastewater treatment plants can not 
only supplement or partially replace crucial resource supply chains that currently have negative impacts 
on the WEFC system due to their source of their feedstocks, but can simultaneously offset the much of the 
energy consumption and greenhouse gas emissions wastewater treatment itself is responsible for.  

The basis of METs are electroactive bacteria capable of direct electron transfer with electrodes.  A great 
deal of physiological and genomic information about model electroactive bacteria has been gained in 
recent decades [4].  However, much remains unknown about how sensory and information processes 
govern their behavior in response to environmental fluctuations in redox conditions, pH, temperature, and 
other environmental variables.  Gaps in knowledge range from how their redox sensory apparatuses work 
to determining how such organisms internalize memories or models of the fluctuations in their local 
environment, and how these information processes affect or are affected by intracellular redox states. 
Within the field of biology there is also a need to incorporate quantitative frameworks to qualify notions 
such as “environmental predictability” from the perspective of bacteria.  These topics are an active area of 
research in information thermodynamics and computational mechanics. Recent literature from these fields 
has proposed models of how stochastic fluctuations affect the operations of sensors and biological 
systems, as well as how cells store and process environmental information [5-8]. There is relatively little 
in terms of experimental validation of these models, however.  Therefore model systems for which the 
environment can be well defined and controlled are desirable.  In this report electroactive bacteria are 
proposed to be ideal model organisms for such studies, to both improve METs and answer fundamental 
questions about bacterial information processing of environmental data.  In what follows, progress on a 
stochastic model of a single cell which takes environmental inputs from epsilon machines with well 
characterized statistics is introduced. 

Biological Redox Chemistry and Electroactive Bacteria 
 
Among all the fundamental processes of cellular biology, oxidation-reduction (“redox”) reactions from 
which cells obtain energy are one of the most vital.  Life has been described as having to fight a constant 
battle against the second law of thermodynamics via maintenance of non-equilibrium states [9].  This is 



made possible by coupling chemical reactions through the uptake of reduced (electron rich) organic or 
inorganic molecules, utilizing these electrons to power manifold cellular processes, and donating the used 
electrons to terminal, oxidized acceptor molecules, such as oxygen, sulfate, or nitrate.  The chemical 
potential difference between electron donors and electron acceptors provides the thermodynamic driving 
force that powers all life.  As depicted below in Figure 1, electron donor molecules such as glucose or 
hydrogen diffuse into cells where enzymes liberate their electrons to power intracellular processes, until 
they are taken up by terminal electron acceptor molecules, such as sulfate, which enter and exit cells via 
diffusion or active pumping across the cellular membrane.  
 

 
Figure 1. Generic schematic of bacterial redox processes that power cells. 

 
In recent decades electroactive bacteria capable of electron transfer outside the cell via non-diffusive 
mechanisms have been the subject of intense research. Electroactive bacteria are capable of electron 
transfer with terminal electron acceptors or donors that reside outside of their cell bodies via novel 
molecular mechanisms which have only been resolved in a handful of model organisms [4, 10].  Two 
direct and two indirect electron transfer pathways have been found to mediate these external electron 
transfer processes, as depicted in Figure 2 below.  
 

 
Figure 2. Electroautotrophic bacteria with electron transfer from cathode via four distinct mechanisms [11]. 

 
There are two types of electroactive bacteria: exoelectrogens and electroautotrophs.  Exoelectrogens are 
microbes that use external terminal electron acceptors for respiration, such as an anode (an electrode with 
a positively poised voltage) or minerals.  Electroautotrophs utilize external electron donors such as 
cathodes (an electrode with negatively poised voltage), metals such as steel, or reduced minerals. 
Exoelectrogens are responsible for the electrical power produced by Microbial Fuel Cells (MFCs).  As 
with chemical fuel cells, in MFCs fuel in the form of reduced organic compounds (i.e. wastewater) is fed 



into an electrochemical chamber with an anode covered in a biofilm consisting of exoelectrogens.  These 
exoelectrogens oxidize the reduced organic compounds and respire these organically derived electrons on 
to the external anode to complete their electron transport processes.  The electrical current/voltage 
produced from this process can be used to power an external load.  Theoretical calculations indicate the 
energy contained in wastewater is several times greater than the total power requirements for treatment 
processes [3].  Electroautotrophs are used in a process called Microbial Electrosynthesis (ME) for the 
production of fuels, chemicals, or single cell proteins from CO2 and electricity. In this process a biofilm 
containing electroautotrophs grows on the surface of a cathode as seen in Figure 3 below.  The microbes 
in the biofilm obtain energy via uptake of electrons from the cathode and use CO2 as their carbon source 
to synthesize commodity chemicals or biodegradable plastics.  This technology is still in the research and 
development phase and is not yet competitive with legacy chemical manufacturing.  Controlling the 
internal redox states of cells and phenotypic variation within biofilms is desirable to optimize both types 
of METs [3,4]. 
 

 
Figure 3. Microbial Electrosynthesis Cell [12]. 

 
From the perspective of bacteria, phenotypic variation within monocultures is a form of “bet hedging” 
that can maximize growth rates.  Instances of phenotypic variation, such as metabolic stratification, have 
been observed in conductive biofilms growing on electrodes [13].  For both MFCs and ME, control of 
phenotypic variation or growth rates can improve system performance.  As such, understanding the 
underlying dynamics of these processes would be enormously informative for engineering MET systems. 
Marzen and Crutchfield (2018) developed a model for how bacteria retain memories of environmental 
fluctuations and optimal strategies for tuning phenotype in response [8].   Within their framework 
environmental fluctuations are modeled as a stationary stochastic process. Environmental states are 
observable by bacteria via a sensor, and the “realizable epigenetic memories...are the causal states of the 
observed environment.”  The “value of information” stored in epigenetic memories is measured by an 
increase in the maximal expected log-growth rate, Δr*, of the bacterial population, above the maximal 
expected growth rate for a bacterial population with no epigenetic memory.  The quantity Δr* can be 
calculated as the mutual information between the current environmental state (Xt) and the previous 
epigenetic state (Yt-1), given in equation 1 below [8]. 



Δr* = I[Yt-1;Xt] (1) 

The quantity on the RHS of equation 1 is known as the instantaneous predictive information. From the 
data processing inequality:  I[Yt-1; Xt] ≤ I[X-∞:t;Xt].  Where I[X-∞:t;Xt] = H[Xt] - hμ is the “predicted 
information rate….largely controlled by the environment’s intrinsic randomness”, i.e. the Shannon 
entropy rate, hμ [8]. Based on these results, an upper bound on the increase in max expected log-growth 
can be computed for a given finite state epsilon machine that generates the environmental states Xt.  

In the context of experiments involving electroactive bacteria, H[Xt] - hμ can be controlled by the 
experimentalist via the electrode, so long as time steps are not shorter than typical response times of 
potentiostat control circuits (~microseconds).  Therefore it is conceivable that the model introduced by 
Marzen and Crutchfield could be emulated by experimental control of an environmental variable, 
electrode voltage, while others are held constant.  Furthermore a particular type of epigenetic memory, 
DNA methylation, could be measured for a population of bacteria subjected to a voltage control protocol 
generated by an epsilon machine with well-defined statistics [14].  Using epsilon machines with different 
H[Xt] - hμ values should lead to observable differences in Δr* and epigenetic memory. 

It is suggested that the model of Marzen and Crutchfield be modified or perhaps extended to a scenario 
where a sensor is not the mediator between environmental and epigenetic states.  Instead, the intracellular 
redox state of a cell could serve as the intermediary.  Intracellular redox states are directly correlated with 
fluctuations in the local redox environment in terms of the identity and quantity of electron donors and/or 
acceptors, and have a significant influence over epigenetic processes [15]. In what follows the general 
model to simulate the intracellular redox state of an electroactive microbe is considered.  Progress on the 
development of this model is provided for a simple case, and future work is outlined.  

Dynamical system 

For this project the dynamical system is the intracellular redox states of a single bacterial cell, depicted in 
Figure 4.  This model was adapted from a stochastic queuing model developed by Michelusi et al. [16]. 
Michelusi et al. explicitly attempted to model chain-forming electroactive bacteria capable of accepting 
and donating electrons via external electron transfer.  Their model captures the time evolution of 
important redox molecule (NADH & ATP) concentrations involved in bacterial electron transport chains 
given different environmental redox scenarios (types and concentration profiles of electron 
donors/acceptors).  Their model was validated using time series data of intracellular concentrations of 
NADH and ATP in yeast under specific electron acceptor/donor constraints.  Such data sets were and still 
are not available for electroactive bacteria, so their use of yeast data was to validate a simpler, sub-set of 
their model for which the underlying cellular processes are the same for both organisms.  This allowed 
them to approximate numeric coefficients needed for the model, which are also used for the simulations in 
this report [16].  

The time evolution of this single cell model depends on the concentration profiles of each pool, the flow 
rates into and out of pools, and the external redox environment. In this report two scenarios for the redox 
environment were simulated; one in which the external environment is constant and another for which a 



bit string representing environmental fluctuations was generated from the epsilon machine for a biased 
coin.  The bit string generated by the biased coin HMM was used as input for the environmental variable 
of which the internal cellular state is a function. In what follows the general model for an 
electroautotrophic bacteria is introduced, along with the relevant equations and matrices that govern the 
behavior of the system.  The special case simulated for this project is then detailed in the methods section, 
and the results of simulations and commentary on future work is provided.  

The most general model consists of three, time dependent intracellular redox pools.  Figure 4 shows these 
three pools, the variables for their time dependent state values, as well as flow rates in and out of each 
pool.  In this model electrons can enter the cell through diffusion of electron rich molecules, “ED”, 
(shown as middle pool) or from an electrode, “ET from electrode”, (left pool).  Electrons stored in both 
the Internal Carrier Pool (IECP) and the External Membrane Electron Pool (EMEP) are used to power the 
electron transport chain of the cell, which in turn results in a proton concentration gradient across the 
cell’s inner membrane.  This proton gradient powers the synthesis of ATP molecules, which are used as 
an energy source for a variety of cellular processes.  This cell model captures the basic sources and 
pathways of electrons within a cell.  A queuing model is used which increments or decrements the value 
for a given pool by one “unit” per iteration, based on allowed transitions between states.  

 

 

Figure 4. General model for bacterial intracellular redox pools and associated inflow and outflow rates.  

1. The External Membrane Electron Pool (EMEP): qEXT(t) ∈ QEXT = {0,1,2,3,....,MEXT) where MEXT 
represents the electron storage capacity of proteins such as c-type cytochromes which can accept 
high energy electrons from external donors, such as an electrode. Flows into and out of this 
electron pool are given by ƛ(H)

EXT and 𝜇(H)
EXT, respectively.  The electrons from this pool flow into 

the ATP pool to synthesize ATP molecules.  
2. The Internal Electron Carrier Pool (IECP): mCH(t) ∈ MCH = {0,1,2,3,....,MCH), where MCH is the 

electrochemical storage capacity of the cell.  This pool represents the number of molecules, such 
as NADH, which act as general purpose, diffusible electron reserves within the cell.  Diffusible 
molecules that act as electron donors, such as acetate or hydrogen, enter the cell (ED in Figure 4) 
and the electrons are converted to NADH and collected in the IECP.  Electrons from this pool 



leave (decrement) when they are used to synthesize an ATP molecule.  ƛCH and 𝜇CH represent flow 
rates in and out of the IECP, respectively. 

3. The ATP pool: nATP(t) ∈ NAXP = {0,1,2,3,....,NAXP), where NAXP is the ATP storage capacity of the 
ATP pool.  ATP molecules are the general energy source within the cell and electrons from either 
the IECP or EMEP are used to synthesize ATP.  𝜇ATP is the rate at which ATP molecules are used 
by the cell, after which electrons are taken up by the terminal electron acceptor at a rate 𝜇OUT.  The 
rate at which ATP molecules are synthesized is determined by the electron flow rates into the 
pool from both the IECP and EMEP, 𝜇CH + 𝜇(H)

EXT. 

The internal state equation for the single cell and the state space, respectively, are provided below:  

sI(t) = ( mCH(t), nATP(t), qEXT(t) ) (2) 

SI = MCH x NAXP x QEXT ∪ {DEAD} (3) 

The environmental state is modeled as sE(t) = (𝛳D(t), 𝛳A(t)), where 𝛳D(t), 𝛳A(t) are the concentration of 
terminal electron donors and acceptors, respectively. 

The state distribution of the system at some time t > 0 is determined by the probability transition matrix 
for the discrete Markov chain between cell states, denoted Pt, and has (|SI| - 1) ⨉ (|SI| - 1) elements, but 
due to the queuing properties, only a subset of transitions are allowed, such that for systems with MCH = 
NAXP > 1, Pt is a sparse matrix. The method to calculate Pt is detailed in the methods section for the 
specific simulations used for this report.  

To incorporate a structured environmental input into this model for which information theoretic quantities 
can be calculated, an epsilon machine was used to generate bit-strings.  The environmental variable, sE(t), 
took on piecewise constant values for each random time interval of the simulation according to these 
previously generated bit strings.  As detailed in the methods sections, the flow rates are dependent on the 
environmental state sE(t).  In this way the statistics of the intracellular redox states is partly determined by 
the environment state variable. The epsilon machine for a biased coin was used for the simulations in this 
report since its statistical properties can be tuned by varying the bias.  Given the binary alphabet (A = {0, 
1}), the physical interpretation is that the ED is not available for a bit value of 0 (0 → sE(t) = 0 mM) or 
the ED is available at a fixed concentration for a bit value of 1 (1 → sE(t) = 10 mM).  Though it is left to 
future work, if the ED were the cathode this value would be expressed as a voltage rather than 
concentration. 

Methods 

For this report the three pool model was simplified to two-pools, sI(t) = (mCH(t), nATP(t)), as shown below 
in Figure 6.  As stated in Michelusi et al. (2014), there is no published data available to estimate 
parameters needed to calculate reaction rates for the EMEP.  Therefore the simulations reported here also 
considered diffusible EDs and made use of the parameter values reported by Michelusi et al.  



 

Figure 5. Simplified two-pool cell mode, sI(t) = (mCH(t), nATP(t)), used for simulations. 

The internal state equation for the single cell is: sI(t) = (mCH(t), nATP(t)), with state space SI = MCH x NAXP 
∪ {DEAD}. For the purpose of constructing a simple model the IECP and ATP pool values were kept 
small (MCH = NAXP = 2).  This results in a 9 state system as depicted in Figure 6 below, along with allowed 
transitions between these states based on the properties of the queue.  

(a)               (b)  

Figure 6. (a) Markov chain for two pool model, sI(t) = (mCH(t), nATP(t)), where MCH = NAXP = 2.  Allowed state-to-state transitions based 
on queuing rules are depicted by directed arrows, with associated transition rates shown for sI = (1,1) & (b) the same model with 

states labelled for construction of matrices P & R. 

For this model the cardinality of the transition probability matrix is |P| = (|SI| - 1) ⨉ (|SI| - 1) = 9 ⨉ 9 = 81, 
and has 16 non-zero entries. 

To determine the state-to-state time evolution of the system a transition probability matrix for some time t 
> 0, Pt, can be calculated from Pt = exp{At}, where A = R(P - I). P is the probability transition matrix for 
the discrete Markov chain between cell states, and R, is the rate matrix, a diagonal matrix where R(i,i) = 
Ri, and Ri = s λi,s, and I is the identity matrix [16].  The R and P matrices used for simulations areΣ  
provided below along with explicit examples of their entries for clarity. 



 

Figure 7. Rate matrix, R, used for simulations. 

Where Ri = s λi,s, and λi,s represents a general rate term from current state i, to some new state, s.  ForΣ  
example, based on the allowed transitions in Figure 6 above, R1 = λ(CH)1,2 + 𝜇(ATP)1,4. 

 

Figure 8. Transition probability matrix, P, used for simulations. 

Where entries in P(i,j) are calculated as λi,j / Ri, where again λi,j is the transition rate for going from si to sj, 
and Ri was previously defined as the sum of rate terms leaving a given state, si.  For example, P12 = λ(CH)1,2 

/ (λ(CH)1,2 + 𝜇(ATP)1,4). After constructing these two matrices the transition probability matrix for some time t 
> 0, Pt, can be calculated from Pt = exp{At}, where, again, A = R(P - I). The following equations were 
used to calculate numerical values for transition rates and the matrices:  

 λCH (sI(t); sE(t)) = 𝛾𝛳D(t) + 𝜌(1 - mCH(t) / MCH)𝛳D(t) (4) 

     𝜇CH (sI(t); sE(t)) = 𝜂(1 - nATP(t) / NAXP)     (5) 

     𝜇ATP (sI(t); sE(t)) = 𝛽𝛳D(t)                  (6) 

Values for the parameters 𝛾, 𝜌, 𝜂, 𝛽 in equations 4-6 above were taken from Michelusi et al. [16].  The 
term 𝛳D(t) represents the electron donor concentration at time t, and provides the link between the bit 
string generated by the biased-coin epsilon machine.  For example, assuming when EDs are present the 
concentration is equal to 10 mM, if the bit string generated by the biased coin HMM is: 0 1 1, then for the 
first time interval t0 → t1 𝛳D(t) = 0, t1 → t2 𝛳D(t) = 10, t2 → t3 𝛳D(t) = 10, and so on.  All simulations were 
carried out using the python programming language along with several libraries, such as scipy, cmpy, and 
numpy. The Gillespie simulation algorithm was used, whereby after initialization of the system, random 



numbers based on defined exponential distributions were used to both select the next time interval, and 
the event/reaction that occurred during that time interval.  

Results 

In progress... 

 

 

Conclusion 

In progress... 
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