When life gives you a Taylor Series, Make a continued exponential out of it.

Keerthi Vasan.G.C

June 5, 2018

What are continued exponentials?

What are continued exponentials?

$-2^{2^{2^{2}}}$

- These are known as Tetrations

$$
\begin{equation*}
a^{a^{a}} \tag{1}
\end{equation*}
$$

What are continued exponentials?

- $2^{2^{2^{2}}}$
- These are known as Tetrations

$$
\begin{equation*}
a^{a^{a}} \tag{1}
\end{equation*}
$$

- Iterated exponentials.

$$
\begin{equation*}
a_{0}^{a_{1}} a_{2}^{a_{2}^{a}} \tag{2}
\end{equation*}
$$

What are continued exponentials?

- $2^{2^{2^{2}}}$
- These are known as Tetrations

$$
\begin{equation*}
a^{a^{a}} \tag{1}
\end{equation*}
$$

- Iterated exponentials.

$$
\begin{equation*}
a_{0}^{a_{1}} a_{2}^{a_{2}^{a}} \tag{2}
\end{equation*}
$$

- Continued exponentials.

$$
\begin{equation*}
a_{0} e^{a_{1} z e^{a_{2} z e}} \tag{3}
\end{equation*}
$$

where $z \in \mathbb{C}$

Constructing a continued exponential

Constructing a continued exponential

- Consider a Taylor Series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=c_{0}+c_{1} z+c_{2} z^{2}+\ldots \tag{4}
\end{equation*}
$$

Constructing a continued exponential

- Consider a Taylor Series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=c_{0}+c_{1} z+c_{2} z^{2}+\ldots \tag{4}
\end{equation*}
$$

- Consider a continued exponential (don't know a_{i})

$$
\begin{equation*}
a_{0} e^{a_{1} z e^{a_{2} z e}}=a_{0}+\left(a_{0} a_{1}\right) z+\left(a_{0} a_{1} a_{2}+\frac{a_{0} a_{1}^{2}}{2}\right) z^{2}+\ldots \tag{5}
\end{equation*}
$$

Constructing a continued exponential

- Consider a Taylor Series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=c_{0}+c_{1} z+c_{2} z^{2}+\ldots \tag{4}
\end{equation*}
$$

- Consider a continued exponential (don't know a_{i})

$$
\begin{equation*}
a_{0} e^{a_{1} z e^{a_{2} z e}}=a_{0}+\left(a_{0} a_{1}\right) z+\left(a_{0} a_{1} a_{2}+\frac{a_{0} a_{1}^{2}}{2}\right) z^{2}+\ldots \tag{5}
\end{equation*}
$$

- Compare both series and solve for the coefficients a_{i}

$$
\begin{array}{r}
c_{0}=a_{0} \\
c_{1}=a_{0} a_{1} \\
c_{2}=a_{0} a_{1} a_{2}+\frac{a_{0} a_{1}^{2}}{2} \tag{8}
\end{array}
$$

How is this representation better than the taylor series ?

How is this representation better than the taylor series?

- We have only changed the representation.

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=a_{0} e^{a_{1} z e^{a_{2} z e}} \tag{10}
\end{equation*}
$$

How is this representation better than the taylor series?

- We have only changed the representation.

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=a_{0} e^{a_{1} z e^{a_{2} z e}} \tag{10}
\end{equation*}
$$

- Is that progress ?

How is this representation better than the taylor series ?

How is this representation better than the taylor series ?

- Let's consider the following taylor series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(n+1)^{n-1}}{n!} z^{n}=e^{z e^{z e}} \tag{11}
\end{equation*}
$$

How is this representation better than the taylor series ?

- Let's consider the following taylor series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(n+1)^{n-1}}{n!} z^{n}=e^{z e^{z e}} \tag{11}
\end{equation*}
$$

- And look the region of convergence of both in the Z plane:

How is this representation better than the taylor series ?

How is this representation better than the taylor series ?

How is this representation better than the taylor series?

- These are new transcendatal numbers not known before and they have been added to the OEIS.

$$
\begin{equation*}
i i^{i^{\prime}}=0.8853030898127635+0.2562981796565728 j \tag{12}
\end{equation*}
$$

How is this representation better than the taylor series?

- These are new transcendatal numbers not known before and they have been added to the OEIS.

$$
\begin{equation*}
i i^{i i^{\prime}}=0.8853030898127635+0.2562981796565728 j \tag{12}
\end{equation*}
$$

- A305208,A305210

$$
\begin{equation*}
e^{i e^{i e \cdot}}=0.576412723031+0.374699020737 j \tag{13}
\end{equation*}
$$

How is this representation better than the taylor series?

- These are new transcendatal numbers not known before and they have been added to the OEIS.

$$
\begin{equation*}
i i^{i i^{\prime}}=0.8853030898127635+0.2562981796565728 j \tag{12}
\end{equation*}
$$

- A305208,A305210

$$
\begin{equation*}
e^{i e^{i e \cdot}}=0.576412723031+0.374699020737 j \tag{13}
\end{equation*}
$$

- A305200,A305202. ($e^{i \pi}=-1$ analog $)$

How is this representation better than the taylor series?

- These are new transcendatal numbers not known before and they have been added to the OEIS.

$$
\begin{equation*}
i i^{i^{\prime}}=0.8853030898127635+0.2562981796565728 j \tag{12}
\end{equation*}
$$

- A305208,A305210

$$
\begin{equation*}
e^{i e^{i e \cdot}}=0.576412723031+0.374699020737 j \tag{13}
\end{equation*}
$$

- A305200,A305202. $\left(e^{i \pi}=-1\right.$ analog $)$

$$
\begin{equation*}
e^{\frac{i}{\pi}} e^{\cdot}=0.885302922632+0.256299537164 j \tag{14}
\end{equation*}
$$

So...

So...

$$
\begin{equation*}
e^{z e^{z e}} \tag{15}
\end{equation*}
$$

- Turns out this representation has remarkable convergence properties

So...

$$
\begin{equation*}
e^{z e^{z e}} \tag{15}
\end{equation*}
$$

- Turns out this representation has remarkable convergence properties
- Exponentially converge to a value

So...

$$
\begin{equation*}
e^{z e^{z e}} \tag{15}
\end{equation*}
$$

- Turns out this representation has remarkable convergence properties
- Exponentially converge to a value
- Exponentially diverge

So...

$$
\begin{equation*}
e^{z e^{z e}} \tag{15}
\end{equation*}
$$

- Turns out this representation has remarkable convergence properties
- Exponentially converge to a value
- Exponentially diverge
- Oscillatory behaviour (Hint: Limit cycles)

So...

$$
\begin{equation*}
e^{z e^{z e}} \tag{15}
\end{equation*}
$$

- Turns out this representation has remarkable convergence properties
- Exponentially converge to a value
- Exponentially diverge
- Oscillatory behaviour (Hint: Limit cycles)

Limit Cycle Diagram

Taking advantage of rapid convergence and divergence property

Mantra:

- Taylor series \rightarrow Continued Exponential

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n} \rightarrow a_{0} e^{a_{1} z e^{a_{2} z e}} \rightarrow a_{0}=\ldots, a_{1}=\ldots, a_{2}=\ldots \tag{16}
\end{equation*}
$$

- Partial sums of the continued exponential

$$
\begin{equation*}
a_{0}, a_{0} e^{a_{1} z}, a_{0} e^{a_{1} z e^{a_{2} z}}, \ldots \tag{17}
\end{equation*}
$$

- Take a weighted average of the continued exponential (Shanks Transform)

Finite Integration : $\int_{0}^{1} \frac{d x}{1+x}=\log (2)=0.69314718056$

$$
\begin{equation*}
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\left.\ldots\right|_{x=1}=\left.x e^{-0.5 x e^{-0.41667 x e}}\right|_{x=1} \tag{18}
\end{equation*}
$$

Table: Accelerating the convergence of $\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$. using shanks and Continued Exponential.

n	Partial Sum	CE	$S^{3}(C E)$
1	1.0000000	-	-
2	0.5000000	-	-
3	0.8333333	-	-
4	0.5833333	-	-
5	0.7833333	-	-
6	0.6166667	-	-
7	0.7595238	-	

Table : Accelerating the convergence of $\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ using shanks and Continued Exponential.

n	Partial Sum	CE	$S^{3}(\mathrm{CE})$
1	1.0000000	0.7191967497444082	-
2	0.5000000	0.6857283810599458	-
3	0.8333333	0.6952583599753418	-
4	0.5833333	0.6925515796826819	-
5	0.7833333	0.6933147356768786	-
6	0.6166667	0.6931001655700353	-
7	0.7595238	0.6931603520385945	-

Table : Accelerating the convergence of $\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ using shanks and Continued Exponential.

n	Partial Sum	CE	$S^{3}(\mathrm{CE})$
1	1.0000000	0.7191967497444082	-
2	0.5000000	0.6857283810599458	-
3	0.8333333	0.6952583599753418	-
4	0.5833333	0.6925515796826819	0.693147183606
5	0.7833333	0.6933147356768786	-
6	0.6166667	0.6931001655700353	-
7	0.7595238	0.6931603520385945	-

Riemann Zeta Function : $\zeta(4)$

$$
\text { Table : } \zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots=1.0823232337
$$

n	Partial Sum	CE	$S^{3}(\mathrm{CE})$
1	1.0644944589	-	-
2	1.0765985126	-	-
3	1.080031458	-	-
4	1.081263548	-	-
5	1.0817803659	-	-
6	1.082022856	-	-
7	1.0821467102	-	-
8	1.0822143374	-	-
9	1.0822533137	-	-
10	1.082276805	-	

Riemann Zeta Function : $\zeta(4)$

$$
\text { Table : } \zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots=1.0823232337
$$

n	Partial Sum	CE	$S^{3}(\mathrm{CE})$
1	1.0644944589	-	-
2	1.0765985126	-	-
3	1.080031458	1.0819533006	-
4	1.081263548	1.0821537913	-
5	1.0817803659	1.0822372034	-
6	1.082022856	1.0822760122	1.0823230265
7	1.0821467102	1.0823206268	-
8	1.0822143374	1.0823063365	-
9	1.0822533137	1.0823124421	-
10	1.082276805	-	-

Extracting more digits of π

Table: Calculating the value of $\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=0.78539816339$ using Aitken's delta-squared process v/s Continued Exponentials

n	partial sum	Ai	CE	$S^{3}(\mathrm{CE})$
1	-0.3333333333	0.78333333	0.71653131057	-
2	0.2	0.78630952	0.80564282461	-
3	-0.1428571429	0.78492063	0.77955389775	-
4	0.1111111111	0.78567821	0.78706041738	-
5	-0.09090909091	0.78522034	0.78492829136	0.7853981632
6	0.07692307692	0.78551795	0.78553041639	-
7	-0.06666666667	-	0.78536103437	-
8	0.05882352941	-	0.78540856837	-

Test for Divergence

- Due to the exponential divergence of the exponential function, the same can be used as a test for divergence

Test for Divergence

- Due to the exponential divergence of the exponential function, the same can be used as a test for divergence
- Example: $\zeta(1)=1+\frac{1}{2}+\frac{1}{3}+\ldots=\infty$

Test for Divergence

- Due to the exponential divergence of the exponential function, the same can be used as a test for divergence
- Example: $\zeta(1)=1+\frac{1}{2}+\frac{1}{3}+\ldots=\infty$
- Here's the continued exponential

Why is this important?

Why is this important?

- Computational efficiency

Why is this important?

- Computational efficiency
- QFT and perturbative methods you know only a few coefficients of the series

Some other interesting Limit cycle diagrams

Comet Map - $x_{n+1}=\log \left(1+z * x_{n}\right)$

Some other interesting Limit cycle diagrams

Sine Map $-x_{n+1}=\sin \left(z * x_{n}\right)$

Some other interesting Limit cycle diagrams
 Lambert's Z Map - $x_{n+1}=z^{x_{n}}$

Some other interesting Limit cycle diagrams

Ana's Map - $x_{n+1}=\sinh \left(z * x_{n}\right)$

Summary

Summary

Thank you!

