When life gives you a Taylor Series, Make a continued exponential out of it.

Keerthi Vasan.G.C

June 5, 2018

Keerthi Vasan.G.C When life gives you a Taylor Series, Make a continued exponentia

∃ >

- ► 2^{2^{2²}}
- These are known as Tetrations

(1)

- E - >

- ► 2^{2^{2²}}
- These are known as Tetrations

Iterated exponentials.

a^{a''}

(1)

(2)

- ► 2^{2^{2²}}
- These are known as Tetrations

Iterated exponentials.

$$a_{0}^{a_{2}^{\cdot}}$$

a^{a''}

(2)

(1)

Continued exponentials.

$$a_0 e^{a_1 z e^{a_2 z e^{\cdot}}}$$
(3)

where $z \in \mathbb{C}$

Consider a Taylor Series

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + c_2 z^2 + \dots$$
 (4)

Consider a Taylor Series

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + c_2 z^2 + \dots$$
 (4)

Consider a continued exponential (don't know a_i)

$$a_0 e^{a_1 z e^{a_2 z e^{\cdot}}} = a_0 + (a_0 a_1) z + (a_0 a_1 a_2 + \frac{a_0 a_1^2}{2}) z^2 + \dots$$
 (5)

Consider a Taylor Series

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + c_2 z^2 + \dots$$
 (4)

Consider a continued exponential (don't know a_i)

$$a_0e^{a_1ze^{a_2ze^{\cdot}}} = a_0 + (a_0a_1)z + (a_0a_1a_2 + \frac{a_0a_1^2}{2})z^2 + \dots$$
 (5)

Compare both series and solve for the coefficients a_i

$$c_0 = a_0 \tag{6}$$

(日) (四) (日) (日)

(9)

$$c_1 = a_0 a_1 \tag{7}$$

$$c_2 = a_0 a_1 a_2 + \frac{a_0 a_1^2}{2} \tag{8}$$

We have only changed the representation.

$$\sum_{n=0}^{\infty} c_n z^n = a_0 e^{a_1 z e^{a_2 z e^{\cdot}}}$$
(10)

We have only changed the representation.

$$\sum_{n=0}^{\infty} c_n z^n = a_0 e^{a_1 z e^{a_2 z e^{z}}}$$
(10)

Is that progress ?

Let's consider the following taylor series

$$\sum_{n=0}^{\infty} \frac{(n+1)^{n-1}}{n!} z^n = e^{z e^{z e^{\cdot}}}$$
(11)

Let's consider the following taylor series

$$\sum_{n=0}^{\infty} \frac{(n+1)^{n-1}}{n!} z^n = e^{z e^{z e^{\cdot}}}$$
(11)

► And look the region of convergence of both in the Z plane:

These are new transcendatal numbers not known before and they have been added to the OEIS.

 $i^{j^{i^{\prime}}} = 0.8853030898127635 + 0.2562981796565728j \quad (12)$

These are new transcendatal numbers not known before and they have been added to the OEIS.

 $i^{j^{i^{-}}} = 0.8853030898127635 + 0.2562981796565728j \quad (12)$

A305208,A305210

$$e^{ie^{ie^{\cdot i}}} = 0.576412723031 + 0.374699020737j$$
(13)

These are new transcendatal numbers not known before and they have been added to the OEIS.

 $i^{j^{i^{-}}} = 0.8853030898127635 + 0.2562981796565728j \quad (12)$

A305208,A305210

$$e^{ie^{ie^{\cdot}}} = 0.576412723031 + 0.374699020737j$$
 (13)

• A305200,A305202. (
$$e^{i\pi} = -1$$
 analog)

These are new transcendatal numbers not known before and they have been added to the OEIS.

 $i^{j^{i^{-1}}} = 0.8853030898127635 + 0.2562981796565728j \quad (12)$

A305208,A305210

$$e^{ie^{ie^{\cdot}}} = 0.576412723031 + 0.374699020737j$$
 (13)

• A305200,A305202. ($e^{i\pi} = -1$ analog)

$$e^{i}\pi e^{j} = 0.885302922632 + 0.256299537164j$$
 (14)

So...

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

e^{ze^{ze.}}

(15)

 Turns out this representation has remarkable convergence properties

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

э

e^{ze^{ze.}}

- (15)
- Turns out this representation has remarkable convergence properties
 - Exponentially converge to a value

< ∃ >

e^{ze^{ze.}}

(15)

э

- Turns out this representation has remarkable convergence properties
 - Exponentially converge to a value
 - Exponentially diverge

4 E b

e^{ze^{ze.}}

(15)

- Turns out this representation has remarkable convergence properties
 - Exponentially converge to a value
 - Exponentially diverge
 - Oscillatory behaviour (Hint: Limit cycles)

e^{ze^{ze.}}

(15)

- Turns out this representation has remarkable convergence properties
 - Exponentially converge to a value
 - Exponentially diverge
 - Oscillatory behaviour (Hint: Limit cycles)

Limit Cycle Diagram

Keerthi Vasan.G.C When life gives you a Taylor Series, Make a continued exponentia

Taking advantage of rapid convergence and divergence property

Mantra:

• Taylor series \rightarrow Continued Exponential

$$\sum_{n=0}^{\infty} c_n z^n \to a_0 e^{a_1 z e^{a_2 z e^{\cdot}}} \to a_0 = ..., a_1 = ..., a_2 = ...$$
(16)

Partial sums of the continued exponential

$$a_0, a_0 e^{a_1 z}, a_0 e^{a_1 z e^{a_2 z}}, \dots$$
 (17)

 Take a weighted average of the continued exponential (Shanks Transform)

Finite Integration :
$$\int_{0}^{1} \frac{dx}{1+x} = \log(2) = 0.69314718056$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots |_{x=1} = xe^{-0.5xe^{-0.41667xe^{-0.4167xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.4167xe^{-0.41667xe^{-0.4167xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.41667xe^{-0.4167xe^{-0$$

Table : Accelerating the convergence of log(2) = $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ using shanks and Continued Exponential.

n	Partial Sum	CE	<i>S</i> ³ (CE)
1	1.0000000	-	-
2	0.5000000	-	-
3	0.8333333	-	-
4	0.5833333	-	-
5	0.7833333	-	-
6	0.6166667	-	-
7	0.7595238	-	-

高 と く ヨ と く ヨ と

3

Finite Integration : $\int_{0}^{1} \frac{dx}{1+x} = \log(2) = 0.69314718056$

Table : Accelerating the convergence of $log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ using shanks and Continued Exponential.

n	Partial Sum	CE	<i>S</i> ³ (CE)
1	1.0000000	0.7191967497444082	-
2	0.5000000	0.6857283810599458	-
3	0.8333333	0.6952583599753418	-
4	0.5833333	0.6925515796826819	-
5	0.7833333	0.6933147356768786	-
6	0.6166667	0.6931001655700353	-
7	0.7595238	0.6931603520385945	-

(*) *) *) *)

Finite Integration : $\int_{0}^{1} \frac{dx}{1+x} = \log(2) = 0.69314718056$

Table : Accelerating the convergence of $log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ using shanks and Continued Exponential.

n	Partial Sum	CE	<i>S</i> ³ (CE)
1	1.0000000	0.7191967497444082	-
2	0.5000000	0.6857283810599458	-
3	0.8333333	0.6952583599753418	-
4	0.5833333	0.6925515796826819	0.693147183606
5	0.7833333	0.6933147356768786	-
6	0.6166667	0.6931001655700353	-
7	0.7595238	0.6931603520385945	-

(*) *) *) *)

Riemann Zeta Function : $\zeta(4)$

Table :
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = 1.0823232337$$

n	Partial Sum	CE	<i>S</i> ³ (CE)
1	1.0644944589	-	-
2	1.0765985126	-	-
3	1.080031458	-	-
4	1.081263548	-	-
5	1.0817803659	-	-
6	1.082022856	-	-
7	1.0821467102	-	-
8	1.0822143374	-	-
9	1.0822533137	-	-
10	1.082276805	-	-

・ロト ・回ト ・ヨト ・ヨト

æ

Riemann Zeta Function : $\zeta(4)$

Table :
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = 1.0823232337$$

n	Partial Sum	CE	<i>S</i> ³ (CE)
1	1.0644944589	-	-
2	1.0765985126	-	-
3	1.080031458	1.0819533006	-
4	1.081263548	1.0821537913	-
5	1.0817803659	1.0822372034	-
6	1.082022856	1.0822760122	1.0823230265
7	1.0821467102	1.0823206268	-
8	1.0822143374	1.0823063365	-
9	1.0822533137	1.0823124421	-
10	1.082276805	-	-

・ロト ・回ト ・ヨト ・ヨト

æ

Extracting more digits of π

Table : Calculating the value of $\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 0.78539816339$ using Aitken's delta-squared process v/s Continued Exponentials

n	partial sum	Ai	CE	<i>S</i> ³ (CE)
1	-0.3333333333	0.78333333	0.71653131057	-
2	0.2	0.78630952	0.80564282461	-
3	-0.1428571429	0.78492063	0.77955389775	-
4	0.1111111111	0.78567821	0.78706041738	-
5	-0.09090909091	0.78522034	0.78492829136	0.7853981632
6	0.07692307692	0.78551795	0.78553041639	-
7	-0.06666666667	-	0.78536103437	-
8	0.05882352941	-	0.78540856837	-

Test for Divergence

Due to the exponential divergence of the exponential function, the same can be used as a test for divergence

Test for Divergence

Due to the exponential divergence of the exponential function, the same can be used as a test for divergence

• Example:
$$\zeta(1) = 1 + \frac{1}{2} + \frac{1}{3} + \ldots = \infty$$

Test for Divergence

- Due to the exponential divergence of the exponential function, the same can be used as a test for divergence
- Example: $\zeta(1) = 1 + \frac{1}{2} + \frac{1}{3} + \ldots = \infty$
- Here's the continued exponential

Why is this important ?

э

Why is this important ?

Computational efficiency

Why is this important ?

- Computational efficiency
- QFT and perturbative methods you know only a few coefficients of the series

Some other interesting Limit cycle diagrams

Comet Map - $x_{n+1} = \log(1 + z * x_n)$

Some other interesting Limit cycle diagrams

Sine Map - $x_{n+1} = \sin(z * x_n)$

Some other interesting Limit cycle diagrams Lambert's Z Map - $x_{n+1} = z^{x_n}$

Keerthi Vasan.G.C When life gives you a Taylor Series, Make a continued exponentia

Some other interesting Limit cycle diagrams

Ana's Map - $x_{n+1} = \sinh(z * x_n)$

Summary

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Thank you!

Keerthi Vasan.G.C When life gives you a Taylor Series, Make a continued exponentia

A ►

- ▲ 문 ▶ - ▲ 문 ▶

æ