How Much Does NOT Cost?

Mikhael Semaan

Project Presentation

PHY 256B Spring 2018

How Much Does NOT Cost?

OR,

Mikhael Semaan

Project Presentation

PHY 256B Spring 2018

How Much Does NOT Cost?

OR, "The Thermodynamic Cost of Information Processing."

Mikhael Semaan

Project Presentation
PHY 256B Spring 2018

The broader question...

The broader question...
For a particular logical operation,

The broader question...

For a particular logical operation, what is the tradeoff between accuracy and energetic cost?

Why Care?

Why Care?

Answering this question would...

Why Care?

Answering this question would...

- place bounds on information-processing efficiency,

Why Care?

Answering this question would...

- place bounds on information-processing efficiency,
- do so as a function of desired accuracy, and

Why Care?

Answering this question would...

- place bounds on information-processing efficiency,
- do so as a function of desired accuracy, and
- (perhaps) shed light on approaching those bounds.

How to start?

How to start?

Information Ratchets!

Modified Information Ratchet

Some Assumptions...

Some Assumptions...

- Internal state transition takes τ.

Some Assumptions...

- Internal state transition takes τ.
- Initiate move/read every T.

Some Assumptions...

- Internal state transition
 takes τ.
- Initiate move/read every T.
- Each move/read takes

$$
T-\tau .
$$

Inside the Ratchet

A NOT Gate

A NOT Gate

Dynamic 1: Input Reads "0."

A NOT Gate

Dynamic 1: Input Reads "0."

A NOT Gate

Dynamic 1: Input Reads "0."

Dynamic 2: Input Reads "1."

A NOT Gate

Dynamic 1: Input Reads "0."

Dynamic 2: Input Reads "1."

A NOT Gate + Detailed Balance!

Dynamic 1: Input Reads "0."

Dynamic 2: Input Reads "1."

A NOT Gate + Detailed Balance!

Dynamic 1: Input Reads "0."

$$
\frac{\operatorname{Pr}(A \rightarrow B)}{\operatorname{Pr}(B \rightarrow A)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T}
$$

Dynamic 2: Input Reads "1."

A NOT Gate + Detailed Balance!

Dynamic 1: Input Reads "0."

$$
\begin{aligned}
& \frac{\operatorname{Pr}(A \rightarrow B)}{\operatorname{Pr}(B \rightarrow A)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T} \\
& \Rightarrow \text { Reversible }
\end{aligned}
$$

Dynamic 2: Input Reads "1."

A NOT Gate + Detailed Balance!

Dynamic 1: Input Reads "0."

Dynamic 2: Input Reads "1."
$\frac{\operatorname{Pr}(A \rightarrow B)}{\operatorname{Pr}(B \rightarrow A)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T}$
\Rightarrow Reversible
\Rightarrow No 100% accuracy

A NOT Gate + Detailed Balance!

Dynamic 1: Input Reads "0."

Dynamic 2: Input Reads "1."

$\frac{\operatorname{Pr}(A \rightarrow B)}{\operatorname{Pr}(B \rightarrow A)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T}$
\Rightarrow Reversible
\Rightarrow No 100\% accuracy
\Rightarrow Tradeoff!

Baby Steps

Baby Steps

Consider Dynamic 1.

Baby Steps

Consider Dynamic 1.

Baby Steps

Consider Dynamic 1.

$$
\frac{\operatorname{Pr}(0|0 \rightarrow 1| 0)}{\operatorname{Pr}(1|0 \rightarrow 0| 0)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T}
$$

Baby Steps

Consider Dynamic 1.

$$
\begin{aligned}
& \frac{\operatorname{Pr}(0|0 \rightarrow 1| 0)}{\operatorname{Pr}(1|0 \rightarrow 0| 0)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T} \\
& \quad \Rightarrow \Delta E=k_{\mathrm{B}} T \ln \left(\frac{1}{\varepsilon}-1\right)
\end{aligned}
$$

Baby Steps

Consider Dynamic 1.

$$
\begin{aligned}
& \frac{\operatorname{Pr}(0|0 \rightarrow 1| 0)}{\operatorname{Pr}(1|0 \rightarrow 0| 0)}=\mathrm{e}^{\Delta E / k_{\mathrm{B}} T} \\
& \quad \Rightarrow \Delta E=k_{\mathrm{B}} T \ln \left(\frac{1}{\varepsilon}-1\right) .
\end{aligned}
$$

As $\varepsilon \downarrow, \Delta E \uparrow$.

Next Steps

Next Steps

- When convinced of approach: do NAND.

Next Steps

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?

Next Steps

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.

Next Steps

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.
- Think about modularity dissipation.

Next Steps

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.
- Think about modularity dissipation.
- Nature? (Evolutionary Dynamics?)

Thanks!

Thanks!

Special thanks to Alec, Greg, Ryan, Dany, Sam, David, and Dr. Crutchfield, for useful discussion and guidance.

Thanks!

Questions?

Special thanks to Alec, Greg, Ryan, Dany, Sam, David, and Dr. Crutchfield, for useful discussion and guidance.

