How Much Does NOT Cost?

Mikhael Semaan

Project Presentation

PHY 256B Spring 2018

How Much Does NOT Cost?

OR,

Mikhael Semaan

Project Presentation

PHY 256B Spring 2018

How Much Does NOT Cost?

OR, "The Thermodynamic Cost of Information Processing."

Mikhael Semaan

Project Presentation

PHY 256B Spring 2018

The broader question...

The broader question...

For a particular logical operation,

The broader question...

For a particular logical operation, what is the tradeoff between accuracy and energetic cost?

Why Care?

Answering this question would...

Answering this question would...

• place bounds on information-processing efficiency,

Answering this question would...

- place bounds on information-processing efficiency,
- do so as a function of desired accuracy, and

Why Care?

Answering this question would...

- place bounds on information-processing efficiency,
- do so as a function of desired accuracy, and
- (perhaps) shed light on approaching those bounds.

How to start?

How to start?

Information Ratchets!

Modified Information Ratchet

Output Tape

Internal state transition

takes τ .

Internal state transition

takes τ .

• Initiate move/read every *T*.

Internal state transition

takes τ .

- Initiate move/read every *T*.
- Each move/read takes
 - $T-\tau$.

Inside the Ratchet

Dynamic 1: Input Reads "0."

Dynamic 1: Input Reads "0."

Dynamic 1: Input Reads "0."

Dynamic 1: Input Reads "0."

$$\frac{\Pr(A \to B)}{\Pr(B \to A)} = e^{\Delta E/k_{\rm B}T}$$

Dynamic 1: Input Reads "0."

$$\frac{\Pr(A \to B)}{\Pr(B \to A)} = e^{\Delta E/k_B T}$$

⇒Reversible

Dynamic 1: Input Reads "0."

$$\frac{\Pr(A \to B)}{\Pr(B \to A)} = e^{\Delta E/k_B T}$$

⇒Reversible

Dynamic 2: Input Reads "1."

⇒No 100% accuracy

Dynamic 1: Input Reads "0."

$$\frac{\Pr(A \to B)}{\Pr(B \to A)} = e^{\Delta E/k_B T}$$

⇒Reversible

Dynamic 2: Input Reads "1."

⇒No 100% accuracy

⇒Tradeoff!

Consider Dynamic 1.

As $\varepsilon \downarrow$, $\Delta E \uparrow$.

Next Steps

Next Steps

• When convinced of approach: do NAND.

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.
- Think about modularity dissipation.

Next Steps

- When convinced of approach: do NAND.
- Physical embedding / scheme for operation?
- Formal transducer representations of other blocks.
- Think about modularity dissipation.
- Nature? (Evolutionary Dynamics?)

Thanks!

Thanks!

Special thanks to Alec, Greg, Ryan, Dany, Sam, David, and Dr. Crutchfield, for useful discussion and guidance.

Thanks!

Questions?

Special thanks to Alec, Greg, Ryan, Dany, Sam, David, and Dr. Crutchfield, for useful discussion and guidance.