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After a brief motivational historical note, I employ the “information ratchet”
framework to elucidate the fundamental trade-off between accuracy and energy
for the reversible NOT operation. I find that enforcing detailed balance—the
microscopic reversibility requirement—leads to a closed form expression for
the necessary energy difference between the two internal states of the NOT
dynamic, and that this energy difference varies linearly with temperature but
logarithmically with accuracy.
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1 History

The development of modern thermodynamics followed humanity’s progress creating
“heat engines”—objects which exchange energy between reservoirs through processes
we now call heat and work. By the time Carnot published his Reflections on the
Motive Power of Heat [5, 6], Hero had already described the aeolipile [9], Papin had
already invented the “steam digester” [8], and Fulton had already commercialized a
steam-powered boat [7]. In fact, in his Reflections’ opening paragraph, Carnot writes
“that [heat] possesses vast motive-power no one can doubt, in these days when the
steam-engine is everywhere so well known.”

A century later, Shannon published A Mathematical Theory of Communication [14,
13], founding information theory. Much like Carnot, he opened with motivation
from already-existing applications: “the recent development of various methods of
modulation such as PCM and PPM which exchange bandwidth for signal-to-noise
ratio has intensified the interest in a general theory of communication.”

The major role of both Carnot’s and Shannon’s papers was to explain why some
schemes (thermal engines in Carnot’s case; data compression methods in Shannon’s)
were better than others from a fundamental standpoint, and to establish general
bounds on the behavior of such schemes. In neither case did the results lead
immediately and directly to better real-world devices. In both cases, however, the
establishment of those bounds launched entire fields of theoretical work and eventually
guided design principles for things like the diesel engine and the compression schemes
which make Netflix and YouTube possible.

Prior to the works of Szilard1 [16, 15], Landaur [10], Penrose [12], Bennett [2], and
others, information theory and thermodynamics seemed more or less distinct. As
an example, in 1854—prior to Shannon and contemporary to Carnot—Lord Kelvin
wrote that the heat-work interplay occurred “by means of forces acting between
contiguous parts of bodies, or due to electric excitation; but in no other way known,
or even conceivable, in the present state of science” [17]. But we now know that
information is another means by which “mechanical action may be derived,” a
revelation inspired by attempts to understand Maxwell’s demon and perhaps most
famously made by Landauer’s principle, which established a minimum energetic cost
for the irreversibly erasing a bit of information.

1Szilard’s work actually predated Shannon’s.

1



2 Introduction

Recently there has been a wealth of progress exploring the thermodynamics of
information and of various kinds of information processing [11]. As was the case with
Carnot and Shannon, we already have working examples of information-processing
machines: our various computers; our brains; animals, plants, and other biological
organisms (including prokaryotes); and perhaps many others like collective behaviors
and evolutionary dynamics.

I focus on one piece of this wealth of examples: the logical binary computer, ubiquitous
in today’s world. Landauer’s principle is an appropriate starting point for working
out the fundamental thermodynamic trade-offs in information processing, but the
picture is not complete (in particular, see “Above and Beyond the Landauer Bound”
[3]). Here, I borrow heavily from the information ratchet framework as used by Boyd
et al. [4] to attempt to establish a different fundamental bound: that on the energy
required to carry out a reversible, probabilistic NOT operation. More broadly, I
am interested in the bounds on energetic requirements for various kinds of logical
operation; this report is a first step in exploring that direction.

3 A Modified Information Ratchet

Figure 1: An information ratchet, which is at all times in contact with a thermal
reservoir, a work reservoir, and an information reservoir (the input and output tapes).
The ratchet is driven to the right at regular intervals, interacting with one bit at a
time from each the input and output tapes; the random variables Xt and Yt describe
the states of those respective bits at time t. The information reservoir’s state as
a whole at time t is specified by the block random variables X(t) ≡ X0:∞(t) for
the input tape and Y (t) ≡ Y0:∞(t) for the output tape. A temperature T gives the
thermal reservoir’s state; and we may specify the work reservoir’s state by a distance
h between a mass m and a massless, frictionless pulley from which the mass hangs
in a gravitational field of strength mg.
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An information ratchet is a device which mediates the interaction between three
reservoirs: thermal, mechanical, and “information.” Boyd et al. showed that in such
a scheme the information reservoir can act as a source or sink of entropy, just as
the familiar thermal and work reservoirs, and that this leads to various kinds of
thermodynamic functionality [4].

Figure 1 depicts a ratchet modified from that in Ref. [4] in one major way: rather
than moving along a single tape (in our case, a string of bits) and interacting with
each bit one at a time, it moves along two tapes, interacting with two bits (one from
each tape) at a time.

One is called the input tape and one the output tape, precluding the intention to write
only to the output tape but read from both tapes. At some time t = 0, X0 and Y0
denote the random variable associated with the interacting bits’ states. Henceforth, I
refer to the interacting bits on the input and output tapes at a particular time as the
“input bit” and “output bit.” For simplicity, I make a few immediate assumptions
about the operation of the ratchet:

1. Depending on the value of the input bit, the ratchet “selects” an internal
dynamic which governs the interaction between it and the input and output
bits.

2. The ratchet never alters the state of the input tape: a particular realization of
the input tape X = x remains constant.

3. The ratchet is driven to the right at unit time intervals.

4. Each transition of the internal dynamic in 1 takes a time τ < 1.

5. It takes time 1− τ for the ratchet to move, read the new bits xt and yt, and
select the appropriate dynamic via 1.

6. The internal transitions are not driven and thus occur due to thermal fluctuations—
interactions with the thermal reservoir as exchanges of heat.

These assumptions lend themselves to Figure 2’s schematic description of the ratchet.
The advantage of such a schematic is that we may eventually be able to define each
block in terms of transducers from computational mechanics [1]; this would describe
the ratchet’s operation constructively and explicitly. In this report, I focus on two of
the blocks: Dynamic 1 and Dynamic 2, and I will describe them in terms of Markov
chains whose states are elements of the joint state space of the ratchet, input, and
output bits. They may be equivalently described by transducers, but I leave them
as Markov chains for clarity when enforcing detailed balance later in this report.
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Figure 2: A schematic of the ratchet’s operation. Some combination of the actual
selection process and the dynamic(s) determines the time scale of the clock pulses
such that assumptions 3–5 hold. Then, at regular time intervals, the ratchet reads the
values of the input and output bits and selects a particular dynamic for interacting
with those bits. A transition occurs, and the new values of the input and output
tapes are the “output” of the ratchet. The dashed box encloses the blocks internal
to the ratchet.

4 NOT Ratchet-Tape Dynamics

0|0 1|0

1− εout

εout

εout 1− εout 0|1 1|1
εout

1− εout

1− εout εout

Figure 3: Dynamic 1 (left) and Dynamic 2 (right) Markov chain representations.
The notation for the states is “output | input,” referring to the values of the output
and input bits. The parameter εout < 1 describes the chances of output error. Given
our assumptions, where we reset by moving the ratchet after each transition, εout is
precisely the per-bit probability of a “write error.”

The two Markov chains in Figure 3 represent implementations of NOT, given a
particular input. As mentioned in the Figure’s caption, εout is a per-bit write error
probability: for each bit we read from the input tape, there is a probability εout we
will incorrectly write to the output tape, since our assumptions enforce driving the
ratchet after every internal transition. The states in each Markov chain are elements
of the of the ratchet, input bit, and output bit joint state space.
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Let us focus on Dynamic 1, since as a Markov chain Dynamic 2 is equivalent up to
state labeling. Let R be the random variable specifying the joint state of the input
and output bits and the ratchet. We can specify the dynamic by transition matrix
elements

Tij = Pr(Rt+τ = j|Rt = i), (1)

where i, j ∈ R, and by a starting distribution 〈µ0| over the elements of R.

It is worth noting a couple of things. First, specifying Rt is equivalent to specifying
Yt given Xt and the dynamic (Dynamic 1 in this case). Also, because we drive the
ratchet at unit time intervals and τ < 1, Yt+τ always refers to the same “slot” on
the output tape as Yt. Finally, as a result of this unit choice, we have that t ∈ N0,
and that Yt specifies the state of the output tape’s tth bit before interaction with
the ratchet, while Yt+τ specifies the state of the very same bit after the interaction.

Dynamic 1 has transition matrix

TD1 =
[

εout 1− εout
1− εout εout

]
. (2)

5 Detailed Balance

In trying to design a computer to do the logical operation specified by Figure 3,
we might try to force εout = 0, and so arrive at a perfectly deterministic logic gate.
This would certainly not be attainable and thermodynamically reversible2 due to its
inability to satisfy detailed balance.

An arbitrary state distribution 〈π| over R satisfies detailed balance with respect
to T if 〈π|iTij = 〈π|jTji. The existence of such a 〈π| implies that 〈π| is a stationary
distribution, so detailed balance implies the existence of a stationary distribution
(but the converse is not true). Detailed balance also implies reversibility, which,
physically, means there is no net entropy produced by the interactions.

2Very recently, I’ve started to see indications floating around some of the early papers—including
Landauer’s, which explicitly assumes irreversibility—that logical irreversibility implies thermody-
namic irreversibility. If the converse (double-converse?) is true—that thermodynamic reversibility
implies logical reversibility—then we have a very real, physical reason to look at cases where detailed
balance does not hold. Since the meat of my project was enforcing detailed balance on a Markov
chain’s transitions, I will proceed undeterred, but I think this is worth more consideration.
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5.1 Applying Detailed Balance to NOT

Assuming a Boltzmann distribution over the states implies, in terms of the marginal
transition probabilities, that we can write the detailed balance requirement as

Tij

Tji
= e∆E/kBT , (3)

where ∆E ≡ Ei − Ej is the energy difference between the states i and j, T is the
temperature of the thermal reservoir with which the ratchet maintains contact, and
kB is Boltzmann’s constant.

Regardless of εout, the allowed transitions Tii and Tjj result in ∆E = 0, which is
reassuring: it means that the state i has the same energy as itself. We don’t run into
real trouble here with εout = 0, either: although it produces an indeterminate left-
hand side of Eq. 3, the numerator and denominator are identical, so limεout→0 = 1.

However, suppose i = 0|0 and j = 1|0. Then Eq. 3 requires

1− εout
εout

= e∆E/kBT

=⇒ ∆E = kBT ln
(1− εout

εout

)
. (4)

Eq. 4 sets exactly the required energy difference between the states 0|0 and 1|0 such
that the dynamic is reversible. If we take εout → 0, that difference blows up (though
only logarithmically, which is convenient).

Thus, forcing reversibility on the process not only rules out the possibility of a
“perfect” NOT computer—it would require infinite energy to do any processing—but
also gives an explicit closed form for the trade-off between error minimization and
(one kind of) energetic cost. This requisite energy difference holds regardless of
implementation and thus places a lower bound on the energy required to actually
make a transition between the states (it assumes whatever scheme exists to make
that transition is adiabatic).
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6 More Considerations, and Future Work

Detailed balance must hold for any operations we expect to be physically reversible.
This gives a prescription for coming up with energy-accuracy trade-offs for many
other operations. One such notable one is NAND, but this already presents a few
challenges: the classical NAND gate takes two inputs in parallel and produces one
output. This is implementable by a ratchet similar to Figure 1’s but with two input
tapes rather than one, effectively increasing the number of dynamics from which
to select. One may also consider a serial type of NAND processing, whereby the
ratchet first reads two bits and then alters a third bit based on their values. The
Markov dynamic for such a ratchet would necessarily include more states, because
the ratchet would necessarily have more memory (it must “remember” the value of
the previous two bits, or just the previous bit, if we include a separate output tape).

Another natural thing to consider is the possibility for input errors, where we
accidentally alter the state of the input tape. Such a case also increases the state
space of a given dynamic, and makes picturing a single large joint state space for
both dynamics difficult; it also introduces at least one new constraint εin, with which
we can consider the trade-offs imposed by detailed balance as above.

Towards both of these ends and for general usefulness, one piece of ongoing work
is automating the process of constraining parameters in a Markov chain to satisfy
detailed balance. Our case was simple, but for exploring accuracy-energy trade-offs
for much larger Markov chains—as necessitated by more complicated operations—it
can presumably range from tedious to intractable by hand.

Additionally, I would like to consider the effects of modularity dissipation, which
Boyd et al. found places bounds on the dissipation due to modularity but can be
overcome by designing ratchet states with larger internal memories (and thus larger
Markov state spaces) [3].

Finally, the Markov dynamics presented here have equivalent representations in
terms of transducers [1]; such a description is advantageous because of its smaller
size but also because of its potential to allow for composition of transducers, which
would bring clarity to the connections between the various blocks of Figure 2.
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