SZILARD'S OTHER ENGINE

Variations on a demonic theme

Kyle Ray

"The Szilard Engine"

- In 1929, Leo Szilard attempts to account precisely how Maxwell's Demon avoids violating the second law
- The term "Szilard Engine" has come to mean only one particular machine from his paper
- Let's investigate his second machine
- As originally conceived
- Why an engine?
- Chaotic Map, Symbolic Dynamics

http://www.pynchon.pomona.edu/entropy/demon.gif

Szilard, measurement

- Two variables for each particle: Type and
"Memory(color)"
- There is a equilibrium distribution over particle type, particles can convert between type

Szilard, control

- Semi permeable membrane for each particletype
- No work, no heat. We are just translating two boxes

Szilard, erasure

- Remove the type membranes and replace them with "color" membranes
- No work, no heat. We are just translating two boxes
- We recover a distribution in the original volume, where the color (memory) is not correlated to 0000000000000000
 the type

Szilard, conclusion

- By step 3, we have changed the entropy:

$$
S=N k \ln \frac{V}{N}+\frac{3}{2} N k \ln \left(\frac{4 \pi m U}{3 h^{2} N}\right)+\frac{5}{2} N k
$$

$\frac{\Delta S}{N k}=-\omega_{A} \ln N \omega_{A}-\omega_{B} \ln N \omega B+\ln N:$
$=-\left(\omega_{A} \ln \omega_{A}+\omega_{B} \ln \omega B\right)$

- In fact we have increased it.
- If done reversibly, that means an an equal decrease in the environment.
- The entire cycle is entropy negative, If we ignore the internal mechanism of the demon.
- Demon must create entropy $\geq-\left(\omega_{A} \ln \omega_{A}+\omega_{B} \ln \omega B\right)$

Beyond Szilard

- Why did you call this an engine?

Non Equilibrium Process

- Reversible process from a non-eq. distribution, ρ, to an eq. distribution, ρ_{0}.
- First, we instantaneously shift the Hamiltonian

$$
H_{0} \rightarrow H_{\rho}=-k T \ln \rho
$$

- This will take work equal to

$$
W_{\Delta E}=\left\langle H_{\rho}\right\rangle_{\rho}-\left\langle H_{0}\right\rangle_{\rho}
$$

■ Then we quasi-statically shift back to H_{0}, which will take work equal to

$$
W_{Q S}=F\left(\rho_{0}\right)-F(\rho)
$$

- Thus, total work to drive the process is:
$W_{\text {drive }}=W_{\Delta E}+W_{Q S}=\left\langle H_{0}\right\rangle_{\rho_{0}}-\left\langle H_{0}\right\rangle_{\rho}+T S(\rho)-T S\left(\rho_{0}\right)$

$\left\langle H_{0}\right\rangle_{\rho_{0}}=N \epsilon_{A} \omega A+N \epsilon_{B} \omega_{B}$
$\left\langle H_{0}\right\rangle_{\rho}=N \omega_{A}\left(\epsilon_{A} \omega_{A}+\epsilon_{B} \omega_{B}\right)+N \omega_{B}\left(\epsilon_{A} \omega_{A}+\epsilon_{B} \omega_{B}\right)$
$S(\rho)=0$
$S\left(\rho_{0}\right)=-N k\left(\omega_{A} \ln \omega_{A}+\omega_{B} \ln \omega_{B}\right)$
$W_{\text {drive }}=-T S\left(\rho_{0}\right)=N k T\left(\omega_{A} \ln \omega_{A}+\omega_{B} \ln \omega_{B}\right)$
$\Delta S_{t o t}=\Delta S_{s y s}-\frac{Q_{d r i v e}}{T}=S\left(\rho_{0}\right)-S\left(\rho_{0}\right)=0$

What about the Demon?

- In order to consider the workings of the demon, we'll need to have an explicit model
- The box IS the demon

l've been herg the eintire time

The Demon Box

- The demon keeps track of particle type and memory state by pushing the particles using sliding barriers.
- We can calculate thermodynamic quantities easily, treating the particles as an ideal gas contained.

The Other Szilard Map

The Other Szilard Map

Now, we can calculate the cost of measurement:

$$
\begin{aligned}
W_{M} & =-\int_{L \delta}^{L \delta \gamma} \frac{N \delta k T}{V} \mathrm{~d} V-\int_{L(1-\delta)}^{L(1-\delta)(1-\gamma)} \frac{N(1-\delta) k T}{V} \mathrm{~d} V \\
& =N k T(-\delta \ln \gamma-(1-\delta) \ln (1-\gamma)) \\
& =N k T\left(\delta \ln \frac{1-\gamma}{\gamma}-\ln (1-\gamma)\right)
\end{aligned}
$$

The Other Szilard Map

Now we can calculate "anything"

є-Transducer

REMOVE THE LRC

Boyd and Crutchfield (2016)

Closing Remarks

- Kind of a null result, but not necessarily an obvious one
- Traditional Szilard engine is a single-particle engine, so this might be easier to implement while capturing all the same essential information engine thermodynamics
- There is a third machine that Szilard describes, that also might merit investigation

References

[1] Szilard Leo. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behavioral Science, 9(4):301-310.
[2] Charles H Bennett. The thermodynamics of computation?a review. International Journal of Theoretical Physics, 21(12):905-940, 1982.
[3] Juan MR Parrondo, Jordan M Horowitz, and Takahiro Sagawa. Thermodynamics of information. Nature physics, 11(2):131, 2015.
[4] Alexander B Boyd and James P Crutchfield. Maxwell demon dynamics: Deterministic chaos, the szilard map, and the intelligence of thermodynamic systems. Physical review letters, 116(19):190601, 2016.

