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”The Szilard Engine”

§ In 1929, Leo Szilard attempts to account precisely how 
Maxwell’s Demon avoids violating the second law

§ The term “Szilard Engine” has come to mean only one 
particular machine from his paper

§ Let’s investigate his second machine
• As originally conceived
• Why an engine?
• Chaotic Map, Symbolic Dynamics

http://www.pynchon.pomona.edu/entropy/demon.gif



Szilard, measurement

§ Two variables for each 
particle: Type and 
“Memory(color)” 

§ There is a equilibrium 
distribution over 
particle type, particles 
can convert between 
type

measurement



Szilard, control

§ Semi permeable membrane for 
each particle type

§ No work, no heat. We are just 
translating two boxes



Szilard, erasure

§ Remove the type membranes 
and replace them with “color” 
membranes

§ No work, no heat. We are just 
translating two boxes

§ We recover a distribution in the 
original volume, where the color 
(memory) is not correlated to 
the type
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In the foundational work by Szilard [1], he describes three different examples of mechanistic

contraptions that interact with both thermodynamic reservoirs and information and mea-

surement. The term "Szilard Engine" has come, in the literature, to refer to his first example

while the second and third examples are largely ignored. In this work, we retrace Szilards i

SZILARD’S PICTURE
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Equilibrium

Equilibrium

Non-Equilibrium

§ By step 3, we have changed 
the entropy:
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§ In fact we have increased it.

§ The entire cycle is entropy 
negative, If we ignore the 
internal mechanism of the 
demon. 

§ Demon must create entropy  

§ If done reversibly, that 
means an an equal decrease 
in the environment.



Beyond Szilard

■ Why did you call this an engine?



Non Equilibrium Process

■ Reversible process from a non-eq. distribution, ρ	
  , to 
an eq. distribution, 𝜌$.

■ First, we instantaneously shift the Hamiltonian 

■ This will take work equal to

■ Then we quasi-statically shift back to 𝐻$, which will 
take work equal to

■ Thus, total work to drive the process is:
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What about the Demon?

§ In order to consider the workings of the 
demon, we’ll need to have an explicit model

§ The box IS the demon

Scanned with CamScanner



The Demon Box

■ The demon keeps track of 
particle type and memory 
state by pushing the 
particles using sliding 
barriers.

■ We can calculate 
thermodynamic quantities 
easily, treating the 
particles as an ideal gas 
contained.

“Normal” Position {L,R,C}

Particle Type {A,B}

Memory State {0,1}

A

B

1

0

L RC



The Other Szilard Map
Initial Measure Control 1

Control 2 Erase Measure 2



The Other Szilard Map

Now, we can calculate the cost of 
measurement:

δ

γ

𝐿

THE SZILARD MAP

Now that we have shown that the Szilard map is equivalent to our physical system, we can cal-
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The Other Szilard Map

δ

γ

𝐿

Does this look familiar?

Baker’s Map

Now we can calculate “anything”



ϵ-Transducer

REMOVE THE LRC 
DIMENSION

Boyd and Crutchfield (2016)



Closing Remarks

§ Kind of a null result, but not necessarily an obvious one

§ Traditional Szilard engine is a single-particle engine, so this might be easier to 
implement while capturing all the same essential information engine thermodynamics

§ There is a third machine that Szilard describes, that also might merit investigation
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