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Animal groups as complex systems

» Determining the heuristics of individuals components of a self-organized
system

« BUT: animals have to do more than stick together

* AND: groupmates are not identical

 The cost of consensus .

* Major question: how and when do
individuals mitigate consensus
costs via influencing group
decisions?

» LiveSlides web content
« But first: who is having influence?

Download the add-in.

Start the presentation.




Inferring influence in a complex system

» The system:

» 29 adult and subadult wild olive baboons (Papio anubis) in the troop

» 23 collared with high-resolution GPS (1 Hz sampling rate) and triaxial accelerometers (10 Hz
sampling)

» Collars removed after 30 days

» Mpala Research Centre in Laikipia, Kenya







Inferring influence with causation entropy

» Causation entropy (Sun & Bollt 2015):

Causation entropy = I(Xpast; Ypresentl Ypast, Wpast’ Zpast)
= H(Ypresentl Ypast, Wpast, Zpast) - H(Ypresentlxpasta Ypast; Wpast’ Zpast)

» “How much is the uncertainty of Y’s present state reduced by knowing X’s
previous state, given that we already know Y’s, W’s and Z’s past state?”

» What causal relationship does X have with Y?




Inferring influence with causation entropy

» Data: Time-series of stop-go movements from accelerometers (10 Hz) for each
baboon

» The alphabet for W, X, Y, and Z: binary (stopped or moving)

> (Down)sampling rate: the rate that optimizes the total information flowing in
the network, given a range of allowable sampling rates

» Using one day of data




Inferring influence with causation entropy

» Only consider the 8 adults (6 females, 2 males)
» Divide the day into 10 different time periods

» Calculate the causation entropy matrix for each time period (at the sampling
rate that optimizes the flow of influence for that given time period)
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» Result:
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Inferring influence with causation entropy
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Inferring influence with causation entropy

» Only consider the 8 adults (6 females, 2 males)
Divide the day into 10 different time periods

» Calculate the causation entropy matrix for each time period (at the sampling
rate that optimizes the flow of influence for that given time period)

Result: -







Not a clear answer as to who is having
the most influence in the group




Characteristics of influence flow throughout the day
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Characteristics of influence flow throughout the day
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Shortcomings of causation entropy

» James et al. 2016

» Conditional dependence!!!
» Remember RRXOR: I(X;Y) = 0, I(X;Z) = 0 and I(Y;Z) = 0, but I(X;Y|Z) = 1

» Interpretation: could baboon A be getting credit for influencing baboon B,
even though it could not have done so without baboon C?

» Synergisms can occur between the “influencer” and any other individual, or
combination of individuals in the baboon troop, and even the “influencee’s”
past




Intrinsic mutual information

>

>
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>

James et al. 2018

Intrinsic Mutual Information:
=min I(X; Y| f(Z))

= min I(Xpast; Ypresentl 1:(Ypast, Wpast: Zpast))

Determines the influence on Y, ...« that came exclusively from X,

Cryptographic roots




Intrinsic mutual information

» Subgroup of three individual baboons traveling alone

Causation Entropy Matrix Intrinsic Mutual Information Matrix




Intrinsic mutual information

» Subgroup of three individual baboons traveling alone

Synergism Matrix




Discussion

» No evidence for an overt influence hierarchy, despite strong dominance
hierarchy

» Even without no clear hierarchical structure, influence flows at higher
quantities and at a faster rate when a baboon troop makes a collective
decision

» Influence in animal groups (and likely most other systems) is non-additive!

» Influence is context-dependent

» Summarizing dyadic relationships does not capture the group’s dynamic
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Further results and outcomes about
which | did not have time to present:




Characteristics of influence flow throughout the day
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Isolating synergies

Transfer Entropy IMI (not conditioned on third parties)

Synergy between “influencer” and “influencee’s” past




Isolating synergies

Synergy between “influencer” and

: Non-isolated synergism
“influencee’s” past yners

Synergism between an “influencer” and other groupmates



Inferring influence with causation entropy

ID 2457 has (relatively)
strong influence over ID 2426
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Intrinsic mutual information

» Subgroup of five individual baboons traveling alone

Causation Entropy Matrix

Intrinsic Mutual Information Matrix




Intrinsic mutual information

» Subgroup of five individual baboons traveling alone

Synergism Matrix




Simulated matrix showing
how o can be less than 1 in a
matrix ordered by its row
sums




