Inferring influence in a baboon troop using information theory

Carter Loftus

PHY 256

Outline

- Background
- Inferring influence with causation entropy
- Shortcomings of causation entropy
- Intrinsic mutual information to the rescue
- Discussion

Animal groups as complex systems

- Determining the heuristics of individuals components of a self-organized system
- BUT: animals have to do more than stick together
- AND: groupmates are **not** identical
- The cost of consensus
- Major question: how and when do individuals mitigate consensus costs via influencing group decisions?

• But first: who is having influence?

Inferring influence in a complex system

> 29 adult and subadult wild olive baboons (*Papio anubis*) in the troop

- 23 collared with high-resolution GPS (1 Hz sampling rate) and triaxial accelerometers (10 Hz sampling)
- Collars removed after 30 days
- Mpala Research Centre in Laikipia, Kenya

Causation entropy (Sun & Bollt 2015):

Causation entropy = $I(X_{past}; Y_{present} | Y_{past}, W_{past}, Z_{past})$

= $H(Y_{present} | Y_{past}, W_{past}, Z_{past}) - H(Y_{present} | X_{past}, Y_{past}, W_{past}, Z_{past})$

- "How much is the uncertainty of Y's present state reduced by knowing X's previous state, given that we already know Y's, W's and Z's past state?"
- What causal relationship does X have with Y?

- Data: Time-series of stop-go movements from accelerometers (10 Hz) for each baboon
- > The alphabet for W, X, Y, and Z: binary (stopped or moving)
- (Down)sampling rate: the rate that optimizes the total information flowing in the network, given a range of allowable sampling rates
- Using one day of data

- Only consider the 8 adults (6 females, 2 males)
- Divide the day into 10 different time periods
- Calculate the causation entropy matrix for each time period (at the sampling rate that optimizes the flow of influence for that given time period)

- Only consider the 8 adults (6 females, 2 males)
- Divide the day into 10 different time periods
- Calculate the causation entropy matrix for each time period (at the sampling rate that optimizes the flow of influence for that given time period)

Result:

- Only consider the 8 adults (6 females, 2 males)
- Divide the day into 10 different time periods
- Calculate the causation entropy matrix for each time period (at the sampling rate that optimizes the flow of influence for that given time period)

- Only consider the 8 adults (6 females, 2 males)
- Divide the day into 10 different time periods
- Calculate the causation entropy matrix for each time period (at the sampling rate that optimizes the flow of influence for that given time period)

- Only consider the 8 adults (6 females, 2 males)
- Divide the day into 10 different time periods
- Calculate the causation entropy matrix for each time period (at the sampling rate that optimizes the flow of influence for that given time period)

Not a clear answer as to who is having the most influence in the group

Characteristics of influence flow throughout the day

σ approaches infinity

 $\sigma \approx 1$

Shortcomings of causation entropy

- James et al. 2016
- Conditional dependence!!!
 - Remember RRXOR: I(X;Y) = 0, I(X;Z) = 0 and I(Y;Z) = 0, but I(X;Y|Z) = 1
- Interpretation: could baboon A be getting credit for influencing baboon B, even though it could not have done so without baboon C?
- Synergisms can occur between the "influencer" and any other individual, or combination of individuals in the baboon troop, and even the "influencee's" past

- ▶ James et al. 2018
- Intrinsic Mutual Information:
 - = min I(X; Y | f(Z))
 - = min I(X_{past}; Y_{present} | f(Y_{past}, W_{past}, Z_{past}))
- Determines the influence on $Y_{present}$ that came <u>exclusively</u> from X_{past}
- Cryptographic roots

Subgroup of three individual baboons traveling alone

Causation Entropy Matrix

Intrinsic Mutual Information Matrix

Subgroup of three individual baboons traveling alone

 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

Synergism Matrix

Discussion

- No evidence for an overt influence hierarchy, despite strong dominance hierarchy
- Even without no clear hierarchical structure, influence flows at higher quantities and at a faster rate when a baboon troop makes a collective decision
- Influence in animal groups (and likely most other systems) is non-additive!
 - Influence is context-dependent

Summarizing dyadic relationships does not capture the group's dynamic

Acknowledgements

Thanks to Ryan, Danny, and Jim for all your help

Thanks for listening!

Questions?

References

- Borge-Holthoefer, J., Perra, N., Gonçalves, B., González-Bailón, S., Arenas, A., Moreno, Y., & Vespignani, A. (2016). The dynamics of information-driven coordination phenomena: A transfer entropy analysis. *Science advances*, 2(4), e1501158.
- Butail, S., Mwaffo, V., & Porfiri, M. (2016). Model-free information-theoretic approach to infer leadership in pairs of zebrafish. *Physical Review E*, 93(4), 042411.
- James, R. G., Barnett, N., & Crutchfield, J. P. (2016). Information flows? A critique of transfer entropies. *Physical review letters*, 116(23), 238701.
- James, R. G., Masante Ayala, B. D., & Crutchfield, J. P. (2018). Modes of Information Flow.
- Sun, J.,& Bollt, E. M. (2014). Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings. *Physica D: Nonlinear Phenomena*, 267, 49-57.

Further results and outcomes about which I did not have time to present:

Temporal structure of quantity and rate of influence flow correlate with temporal structure of baboon collective decisionmaking

Time cube of a baboon group's movement throughout one day

Characteristics of influence flow throughout the day

Isolating synergies

Transfer Entropy

IMI (not conditioned on third parties)

Synergy between "influencer" and "influencee's" past

Isolating synergies

Synergy between "influencer" and "influencee's" past

Non-isolated synergism

Synergism between an "influencer" and other groupmates

Subgroup of five individual baboons traveling alone

Causation Entropy Matrix

Intrinsic Mutual Information Matrix

Subgroup of five individual baboons traveling alone

Synergism Matrix

Simulated matrix showing how σ can be less than 1 in a matrix ordered by its row sums