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Abstract 

 Competitive video gaming is discussed using concepts developed in PHY 256. An 

experimental computational architecture, based loosely on Psyonix Studio’s smash eSports hit, 

Rocket League, is used to explore relationships between process structure and game outcome. 

Ultimately, questions of the deeper meanings behind “competition” and “effective play” are left 

unanswered, but some tangential results indicate that concrete definitions could yet be produced. 

  



Introduction 

 There’s never been a better time to live as a professional video game player. Indeed, 

before the year 20001, playing video games for cash was, at best, a diverting second source of 

income. With the evolution of broadcast eSports (Electronic Sports) leagues and tournaments, 

truly obsessed and talented gamers gained a spotlight. Average Joes who played games were 

willing to pay to see the best; thus a profession was born. With the development of web-based 

video streaming services like Twitch2 in 2011, droves of “pro gamers,” mostly young and 

charismatic, now pay rent by entertaining the masses and selling fan merchandise. 

 What traits give these pro gamers their abilities to perform? Can anyone be a pro given 

enough training, or, as with professional athletics, do pro gamers have inherent physical 

advantages, like reaction time? What makes a game worthy of competition for its players? That 

is, what attracts gamers to certain kinds of games? Here, I provide a few insights into how we 

might go about answering these questions in the framework of machines. 

Background and Questions 

 When I was young, I played games like Smash Bros 64, Halo: Reach, and a few of my 

dad’s favorite “old” arcade games. When I wasn’t blaming RNG (random number generation) 

for my losses, I convinced myself that I had been technically outperformed. That is, there was 

nothing I could’ve done to win; the person I was playing against had too much practice jiggling 

their thumbs in just the right way to beat me.  

 Then I met Rocket League, and the whole tone of video games changed. I’d never before 

played a competitive game at a competitive level. That is, I was never technically skilled enough 

to start playing mind games with my opponents, to attempt to break them not by being more 

mechanically adept but strategically adept. When I began searching for final project topics, I 

realized that machines and stochastic data generators could be a useful framework in which to 

attempt getting a deeper understanding of games and the many layers of competition. After all, 

competitive games consist of players who interact with a game through digital inputs, changing 

the dynamics of the game for the opponent. 

 Let’s get concrete: it may be possible to codify a player’s choice of state (as symbolized 

by an input or set of inputs on a controller) as a Markov chain with probabilities weighted by 

observations of the opponent’s playstyle and the physics of the game (Figure 1). By playing the 

game, he could construct a set output-generating states which result in victories given inputs 

communicated by the game. Further, maybe a game can be reduced to a communication channel 

through which opponents push information about their own internal processing. Then a game 

would be not a test of technical ability alone (alphabet), but also of the ability to appropriately 

interpret the signals generated by the opponent (synchronization). 



 

Figure 1: Modified “Modelling a Process” Diagram from PHY 256A Lec. 13. Here, inputs are communicated 

between players through the game. Attempts to synchronize to the opponent allow for prediction of the opponent’s 

future actions, allowing the player to establish counter-moves to produce more favorable outcomes. 

 Immediately this framework lends itself to a ton of questions. Among my favorite are: 

1) How does the structure of a game’s rules affect its level of competitiveness? 

2) How does a game’s structure affect the structure of a player’s processing? 

3) In a given game, how does an opponent’s structure affect the required structure of the 

opponent? 

4) What structure allows some pros to master multiple competitive games? 

5) What limits do the time constraints of real-time play exert on playstyle? 

6) Can we, in some sense, “separate” mechanical ability from strategic play? 

7) Does successfully beating an equally mechanically skilled opponent amount to 

synchronizing to their processes and choosing paths which defeat those options? 

While 1-5 are interesting and broadly applicable, I felt inadequately equipped to tackle 

these problems, which seem to have a close connection to emergence. I chose instead to focus on 

6 and 7. Drawing inspiration from the Super Smash Bros. Melee community, I hoped to 

decompose good gameplay into two components: mechanical ability, which would correspond to 

a large number of possible states, and ability to synchronize to the opponent, for optimal 

prediction. On online forums, the former would be referred to as “tech” or “techskill” while the 

latter would be called “reads,” shorthand for “reading your opponent.” 

Could I produce a simple enough competitive game to show that, at least for some games, 

a winning player was one capable of accessing all states and synchronizing to (or “reading”) the 

opponent? 

Experiment 

 I chose to give Python a shot for this project, as it seemed to be a choice for rapid 

prototyping. Also, I wanted to animate game simulations, and I already played around with 

MatPlotLib during PHY 256. Due to my familiarity with the game, I chose to drastically simplify 

and encode Rocket League. Rocket League may be most briefly described as “car soccer.” In the 



1v1 game mode, two players face off on a rectangular map, attempting to score goals at opposite 

ends of the pitch. (Many video examples of gameplay can be found on YouTube.) 

 First I developed rules for the arena. I chose to make positions for the two players and 

ball discrete points on a 430 by 350 grid. I gave the arena walls, and coded in initial positions for 

the three actors. I designed in ball logic less like soccer and more like football: when a player 

picks up the ball, they turn green to symbolize possession, and the ball travels with them. The 

two hardest decisions to make involved “contests,” where an opposing player attacks the player 

in possession of the ball, and player AI. For contests, I settled on slightly randomizing the 

position of the ball (fumbling) and also randomizing the positions of the players (bumping). 

After each contest, the players would be, on average, an equal distance from the ball. 

 

Figure 2: Left Rocket League Arena, top view (image courtesy Reddit user Psyonix_Dave). Note the two goals the 

left and right ends, along with the round ball in the center of the court. Right All positions during a simulated game 

between two perfect players. Orange wins! 

 Choosing what sorts of strategies to give the players was tricky, not only because I 

wanted to make the game interesting to watch, but also because I wanted to be able to generate 

the sorts of actions the player might take with machines like those we’d developed during the 

course. Because I wanted to break the game into two components, mechanics and strategy, I 

designed several player archetypes: undertrained vs. perfect mastery of controls, and random vs. 

optimal decision making. On the “mechanics” side, the undertrained player was allowed to move 

left and right, only, while the perfect player was allowed to move any of 8 directions on the grid 

(Figure 3). On the strategy side, the random player would choose his next direction randomly 

among those provided, while the optimal decision maker would move toward the ball as fast as 

possible and, when in possession of the ball, as fast as possible to the opponent’s net. 



 

Figure 3: Allowed movement options for the Perfect Mastery (left) and Undertrained Mastery (right) mechanical 

archetypes. 

 With these archetypes in hand, I pitted them against each other in my 2-D Rocket League 

clone and observed the results. 

Results 

Perfect Mastery, Perfect Strategy vs Perfect Mastery, Perfect Strategy: 

These two equally-well-equipped players would converge on the ball’s location at the 

middle of the field and fight for a few contests before one would break away and score a goal. 

Who would score was a coinflip. 

Undertrained Mastery, Perfect Strategy vs Perfect Mastery, Perfect Strategy: 

 The undertrained player’s lack of inputs damaged his ability to react to the more 

mechanically adept perfect player, despite optimal positioning. After a single contest at midfield, 

the double-perfect player won nearly all the time, though, rarely, the undertrained player would 

get lucky during contest randomization and score a runaway goal. 

Perfect Mastery, Random Strategy vs Perfect Mastery, Perfect Strategy: 

 In this game, random strategy was worse-than-useless when combined with perfect 

mastery. Typically, the perfect player would sweep the ball from midfield and charge directly 

into the meandering random player’s net; on the rare occasion of a contest, the perfect player 

would simply re-challenge to gain control of the ball and score. 

Perfect Mastery, Random Strategy vs Undertrained Mastery, Perfect Strategy: 

 When two flawed players battled, perfect strategy dominated over mechanical ability. In 

the rare event of a contest, the game would typically end in a stalemate (that is, the simulation 

would end before a scored goal). 

 The victory table below summarizes the results. 

 

  



(Mastery, 
Strategy) 

(P,P) (P,R) (U,P) (U,R) 

(P,P) Coinflip (P,P) (P,P) (P,P) 

(P,R) (P,P) Stalemate/coinflip 

(untested) 

(U,P) Stalemate/(U,R) 

(untested) 

(U,P) (P,P) (U,P) Stalemate/coinflip 
(untested) 

(U,P) 

(U,R) (P,P) Stalemate/(U,R) 

(untested) 

(U,P) Stalemate/coinflip 

(untested) 
Table 1: (P,P) here means “Perfect Mastery, Perfect Strategy;” U means “Undertrained Mastery,” while R means 

“Random Strategy.” The most common game outcome given the bolded competitors is given in each corresponding 

cell. 

 We can see that, for matchups that didn’t take too long to simulate, perfect strategy is a 

common theme. Undertraining is only more likely to come out on top when both players’ 

decision-making is randomly distributed over their options. 

Discussion and Conclusion 

 Right off the bat, I’ll say I failed to show that being “good” at a competitive game 

amounts to mechanical ability and synchronization to an opponent. However, I do think I made 

some interesting headway. 

I failed to test my hypothesis because the game I designed wasn’t competitive. The 

optimal strategy for the game I designed did not depend on the opponent’s position as an input. 

There was no need to interface with an intelligent actor to win. Playing the game optimally 

required only the ball’s position. Certainly, then, a competitive game does require that opponents 

exchange information. Further, there was only one optimal strategy, and it won an overwhelming 

majority of the time; there was no “rock” to the optimal “scissors,” no weak points that would 

require adaptation on the part of the aggressor. A competitive game requires balance in the sense 

that there must be a variety of playstyle states which act as counters to other favorable playstyle 

states. 

I also think I learned something about the utility of randomness in competitive play. In 

games with a large parameter space, like Rocket League or my drastically simplified clone, 

random inputs result in loss a huge percentage of the time. (From the initial position, even just 

holding in the direction of the opponent’s goal has a better chance of winning.) In games with a 

much smaller set of options, though, like rock-paper-scissors, choosing perfectly randomly 

should yield roughly 50% wins regardless of your opponent’s strategy.  

One particularly interesting case in the victory table is the undertrained random strategist 

vs the master random strategist. The former can only move left and right, while the latter can 

also move up, down, and along diagonals. Because the ball and goals lie on a line from the 

players’ initial positions, it stands to reason that the player with fewer options will eventually 

move to the center of the pitch, gain control of the ball, and defeat the player with more options, 

who will simply move out of the way. Attempting to generalize, a player who is randomly 

pressing only a few useful buttons has an advantage over a more technically skilled player who 



randomly explores his available motions. With lower entropy rate, number of states, and 

complexity, given the right circumstances, a player can still routinely beat a “more qualified” 

opponent. It seems that there is likely not a 1-1 mapping between game structure and “ideal” 

entropy rates or statistical complexities on the part of the players. 

So what makes a pro? My guess is that an ideal player’s process must have a high enough 

entropy rate to be difficult to synchronize with, but a low enough entropy rate to still have 

directed, efficient play. An ideal player should also be able to perform any action, but only when 

appropriate—overly technical play can actually be a handicap in some games. 

Future Study 

In addition to the unaddressed questions mentioned in the Background and Question, one 

which seemed increasingly relevant as I continued on this project was: according to a player 

viewing the outputs of a game, can the generating process be separated into “game rules” and 

“opponent strategies,” or are the two hopelessly entangled? My guess is that, in general, they are 

inextricable. However, in the same way that the game I designed didn’t require the opponent’s 

position to have optimal strategy, some special cases may exist. 

If I wanted to replicate this project, I think I would have a better idea of how to design a 

competitive game. It would need to be balanced such that several different strategies could 

outweigh others, and players could develop an understanding of the opponent’s preferred 

playstyles to generate appropriate responses. Further, instead of coding player behaviors directly, 

I think I would like to generate inputs directly from a model, rather than attempting to produce a 

model in hard code. This would allow for simpler quantitative discussion, which was admittedly 

difficult. 

 If the relationships between the structures of the game’s rules, the opponent’s playstyle, 

and the player’s required responses can be generalized, efficient design of optimal players could 

eventually be achieved. This could have impact far beyond the initial impetus of individual 

improvement in video games, into the realm of general learning and strategy. 
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Appendix: Code 

import numpy as np 

from scipy.spatial.distance import pdist, squareform 

import matplotlib.patches as patches 

import matplotlib.pyplot as plt 

import scipy.integrate as integrate 

import matplotlib.animation as animation 

import random 

import time 

 
#control panel 

matchLength=500 

car1Behavior = 1  #1-->randomWalk, 2--> ballChase and score 3-->can't move up or down 

car2Behavior = 3 

ballBehavior = 1 

challengeRadius = 10 

animationName = "example.mp4" 

 
#initial state 

car1vec = np.array([[30,175]]) #should be 30, 175 and 400, 175; goals run from 70 to 140 

car2vec = np.array([[400,175]]) 

ballvec = np.array([[215,175]]) 

car1possession = 0 

car2possession = 0 

challengeState = 0 

 

 
#functions we'll need 

    #high-position update functions 

def updatecar1(car1xy, car2xy, ballxy): 

 

    if car1xy[0]<0 or car1xy[0]>430 or car1xy[1]<0 or car1xy[1] > 350: 

        car1new = correctOutOfBounds(car1xy) 

    elif car1Behavior==1: 

        car1new = randomWalk(car1xy) 

    elif car1Behavior == 2: 

        if car1possession==0: 

            car1new = ballchaseMode(car1xy, ballxy) 

        else: 

            car1new = straightToRightGoal(car1xy) 

    else: 

        print('error in updatecar1') 

    return car1new 

def updatecar2(car1xy, car2xy, ballxy): 

    if car2xy[0]<0 or car2xy[0]>430 or car2xy[1] < 0 or car2xy[1] > 350: 

        car2new = correctOutOfBounds(car2xy) 

    elif car2Behavior==1: 

        car2new = randomWalk(car2xy) 

    elif car2Behavior == 2: 

        car2new = ballchaseMode(car2xy,ballxy) 

        if car2possession == 0: 

            car2new = ballchaseMode(car2xy, ballxy) 

        else: 

            car2new = straightToLeftGoal(car2xy) 

    elif car2Behavior == 3: 

        car2new = noUpOrDown(car2xy,ballxy) 

        if car2possession == 0: 

            car2new = noUpOrDown(car2xy,ballxy) 

        else: 

            car2new = moveLeft(car2xy) 

    else: 

        print('error in updatecar2') 

    return car2new 

def updateball(car1xy, car2xy, ballxy): 
#In this version, the ball doesn't move unless possessed by a player. Then in follows the 

player's movement. 

    if ballBehavior ==1: 

        if car1possession==1 and car2possession==1: 

            ballxynew=[ballxy[0]+random.randint(-5,5),ballxy[1]+random.randint(-5,5)] 



        elif car1possession ==1: 

            ballxynew = [car1xy[0],car1xy[1]] 

        elif car2possession == 1: 

            ballxynew = [car2xy[0],car2xy[1]] 

        else: 

            ballxynew = [ballxy[0], ballxy[1]] 

        return ballxynew 

    else: 

        ballxynew = [ballxy[0], ballxy[1]] 

 
#low-level position update functions 

def moveRight(thingxy): 

    newthingxy = [thingxy[0]+1,thingxy[1]] 

    return newthingxy 

def moveLeft(thingxy): 

    newthingxy = [thingxy[0]-1,thingxy[1]] 

    return newthingxy 

def moveUp(thingxy): 

    newthingxy = [thingxy[0],thingxy[1]+1] 

    return newthingxy 

def moveDown(thingxy): 

    newthingxy = [thingxy[0],thingxy[1]-1] 

    return newthingxy 

def moveUpRight(thingxy): 

    newthingxy = moveRight(moveUp(thingxy)) 

    return newthingxy 

def moveDownRight(thingxy): 

    newthingxy = moveRight(moveDown(thingxy)) 

    return newthingxy 

def moveUpLeft(thingxy): 

    newthingxy = moveLeft(moveUp(thingxy)) 

    return newthingxy 

def moveDownLeft(thingxy): 

    newthingxy = moveLeft(moveDown(thingxy)) 

    return newthingxy 

def correctOutOfBounds(objxy): 

    if objxy[0] <= 0: 

        newxy = moveRight(objxy) 

    elif objxy[0] >= 430: 

        newxy = moveLeft(objxy) 

    elif objxy[1] <= 0: 

        newxy = moveUp(objxy) 

    elif objxy[1] >= 350: 

        newxy = moveDown(objxy) 

    else: 

        print('ERROR IN correctOutOfBoundsWalk') 

        newxy = objxy 

    return newxy 

def straightToLeftGoal(objxy): 

    if objxy[1]<75: 

        newobjxy = moveUpLeft(objxy) 

    elif objxy[1]<135: 

        newobjxy = moveDownLeft(objxy) 

    else: 

        newobjxy = moveLeft(objxy) 

    return newobjxy 

def straightToRightGoal(objxy): 

    if objxy[1] < 75: 

        newobjxy = moveUpRight(objxy) 

    elif objxy[1] < 135: 

        newobjxy = moveDownRight(objxy) 

    else: 

        newobjxy = moveRight(objxy) 

    return newobjxy 

def checkChallenge(x1,y1,x2,y2): 

    if (x2-x1)**2+(y2-y1)**2<challengeRadius: 

        trans=1 

    else: 

        trans=0 

    return trans 

 



#individual "Car brains" or strategic "states" 

def randomWalk(objxy): 

    newxy = [objxy[0]+random.randint(-1,1),objxy[1]+random.randint(-1,1)] 

    return newxy 

def ballchaseMode(carxy,ballxy): 

    relx,rely = relativePosition(carxy,ballxy) 

    if relx>0: 

        if rely<0: 

            newcarxy = moveDownRight(carxy) 

        elif rely>0: 

            newcarxy = moveUpRight(carxy) 

        else: 

            newcarxy = moveRight(carxy) 

    elif relx<0: 

        if rely>0: 

            newcarxy = moveUpLeft(carxy) 

        elif rely<0: 

            newcarxy = moveDownLeft(carxy) 

        else: 

            newcarxy = moveLeft(carxy) 

    else: 

        if rely>0: 

            newcarxy = moveUp(carxy) 

        elif rely<0: 

            newcarxy = moveDown(carxy) 

        else:#activate possession? 

            newcarxy = carxy 

    return newcarxy 

def noUpOrDown(carxy,ballxy): 

    relx,rely = relativePosition(carxy,ballxy) 

    if relx>0: 

        if rely<0: 

            newcarxy = moveRight(carxy) 

        elif rely>0: 

            newcarxy = moveRight(carxy) 

        else: 

            newcarxy = moveRight(carxy) 

    elif relx<0: 

        if rely>0: 

            newcarxy = moveLeft(carxy) 

        elif rely<0: 

            newcarxy = moveLeft(carxy) 

        else: 

            newcarxy = moveLeft(carxy) 

    else: 

        if rely>0: 

            newcarxy = moveLeft(carxy) 

        elif rely<0: 

            newcarxy = moveLeft(carxy) 
        else:#activate possession? 

            newcarxy = carxy 

    return newcarxy 

 
#navigation 

def relativePosition(obj1,obj2): 

    xpos,ypos = obj2[0]-obj1[0],obj2[1]-obj1[1] 

    return xpos, ypos 

 

#unused 

def plotState(car1xy, car2xy, ballxy): 

    plt.plot(car1xy[0],car1xy[1],'ro') 

    plt.plot(car2xy[0],car2xy[1],'bo') 

    plt.plot(ballxy[0],ballxy[1],'ko') 

    plt.show() 

 

#generate the dataset (MAIN RULES OF THE GAME!!!) 

for x in range (0,matchLength): 

    if car1vec[x][0]==ballvec[x][0] and car1vec[x][1]==ballvec[x][1]: 

        car1possession = 1 

    elif car2vec[x][0]==ballvec[x][0] and car2vec[x][1]==ballvec[x][1]: 

        car2possession = 1 



    else: 

        car1possession = 0 

        car2possession = 0 

 

    challengeState = checkChallenge(car1vec[x][0],car1vec[x][1],car2vec[x][0],car2vec[x][1]) 

 

    if challengeState==1: 

        dummy = [car1vec[x][0]+random.randint(-10,10),car1vec[x][1]+random.randint(-10,10)] 

#defines rules of 50-50s 

        car1vec=np.vstack((car1vec,dummy)) 

        dummy = [car2vec[x][0]+random.randint(-10,10),car2vec[x][1]+random.randint(-10,10)] 
#defines rules of 50-50s 

        car2vec=np.vstack((car2vec,dummy)) 

    else: 

        dummy=updatecar1(car1vec[x][:],car2vec[x][:],ballvec[x][:]) 

        car1vec=np.vstack((car1vec,dummy)) 

        dummy=updatecar2(car1vec[x][:],car2vec[x][:],ballvec[x][:]) 

        car2vec = np.vstack((car2vec, dummy)) 

 

    dummy=updateball(car1vec[x+1][:],car2vec[x+1][:],ballvec[x][:]) 

    ballvec = np.vstack((ballvec, dummy)) 

 

#-----------------------------------------BIG DIVIDE HERE------------------------------------- 

#animate the dataset 

def data_gen(): 

    t = data_gen.t 

    cnt = 0 

    while cnt < matchLength: 

        cnt+=1 

        t += 0.01 

        yield car1vec[cnt][0], car1vec[cnt][1], car2vec[cnt][0], car2vec[cnt][1], 

ballvec[cnt][0], ballvec[cnt][1] 

 

data_gen.t = 0 

fig, ax = plt.subplots() 

line, = ax.plot([], [], lw=2) 

line2, = ax.plot([], [], lw=2) 

line3, = ax.plot([], [], lw=2) 

ax.set_ylim(0, 350) 

ax.set_xlim(0, 430) 

ax.grid() 

xdata, ydata = [], [] 

x2data, y2data = [],[] 

x3data, y3data = [],[] 

def run(data): 
    # update the data 

    t,y, t2, y2, t3, y3 = data 

    xdata.append(t) 

    ydata.append(y) 

    x2data.append(t2) 

    y2data.append(y2) 

    x3data.append(t3) 

    y3data.append(y3) 

 

    ax.figure.canvas.draw() 

    line.set_data(xdata, ydata) 

    line2.set_data(x2data, y2data) 

    line3.set_data(x3data, y3data) 

 

    return line3, line2, line, 

 

 

ani = animation.FuncAnimation(fig, run, data_gen, blit=True, interval=40, 

    repeat=True, save_count = 500) 

 

ani.save(animationName) 

 

plt.show() 

 


