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More is Different 

“The behaviour of large and complex aggregations of 
elementary particles, it turns out, is not to be 
understood in terms of a simple extrapolation of the 
properties of a few particles.  

Instead, at each level of complexity entirely new 
properties appear, and the understanding of the new 
behaviours requires research which I think is as 
fundamental in its nature as any other.” 

Philip W. Anderson, More is Different 

Superconductivity Quantum Magnetism Bose-Einstein Condensation 
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ML & Many-Body Physics 

G. Carleo & M. Troyer. Science 355 602 (2017) 

Efficient Repr. of State Recommender Systems 

Quantum ML 

L. Wang.  PRE 96 051301R (2017) 

Phase Classification 

Na 

J. Biamonte et al.  Nature 549 195 (2017) 
 

J. Carrasquilla & R.G. Melko  
Nat. Physics 13 431 (2017) 

 

Deep learning 
algorithms can 

discover efficient 
Monte Carlo 

updates 

Quantum speed-up of classical 
ML algorithms 
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More is Exponential 

D = 8 

D = 256 

Quantum many-body systems are 
in general not solvable analytically 

Dimensionality of Hilbert space 
increases exponentially with the 
size of the system 

Computationally restricted to 
unrealistically small systems 

D = 1048576 

Can we find an efficient way 
to represent the states of 

interest? 
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Deep Learning 

Consists of layer(s) of nonlinear 
processing units with the aim of 
extracting features (macroscopic 
behaviour) from the underlying 
data (microscopic details) 
 

Works surprisingly well with a 
relatively small number of layers 
or nodes (as compared to the 
exponential state space of the 
inputs) 

“Why does deep and cheap 
learning work so well?” H.W. Lin, M. Tegmark & D. Rolnick 

J. Stat. Phys. 168 1223 (2017) 
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Physics ↔ Machine Learning 

Machine Learning 

Surprisal (Self-Information) 

Gaussian Probability Distribution 

Softmax function 

Bit 

Feature 

Noise 

Physics 

Hamiltonian 

Quadratic Hamiltonian 

Partition function 

Spin 

Relevant Operator 

Irrelevant Operator 

“The success of shallow neural networks depends not only on mathematics, 
but also on physics, hinging on symmetry, locality, and polynomial log-

probability in data from or inspired by the natural world.” 

H.W. Lin, M. Tegmark & D. Rolnick 
J. Stat. Phys. 168 1223 (2017) 
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Restricted Boltzmann Machine 

X4 

h1 h2 h3 

Hidden Layer 

Visible Layer 

X1 X2 X3 X5 

h4 
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Restricted Boltzmann Machine 

Energy function 

State Probability 

Each layer is conditionally independent 
(essentially Markov shielding) 

Activation Probabilities 

Connection exists between RBMs 
and Renormalization Group! 

P. Mehta & D. Schwab, arXiv:1410.3831 (2014) 



PHY 256B Presentation ML Architectures and Many-Body Physics 9 

Renormalisation Group 

Block Spin Decimation 

 
 

 

(Renormalisation Group Flow) 
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P. Mehta & D. Schwab, arXiv:1410.3831 (2014) 
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1D Ising Model 
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P. Mehta & D. Schwab, arXiv:1410.3831 (2014) 



PHY 256B Presentation ML Architectures and Many-Body Physics 12 

RG ↔ Deep Learning   

Devising RG transformations is an art – need to identify irrelevant degrees-of-
freedom and perform rescaling of couplings in a tractable manner  

Does the DL network 
“know” the correct 

RG procedure to 
perform? 

Yes! The “Real Space Mutual Information” 
(RMSI) algorithm to able to implement RG 
transformations in an unsupervised manner 

M. Koch-Janusz & Z. Ringel 
Nat. Phys. 14 578 (2018) 
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Efficient Representation of States 

While generic states require exponential resources to describe, typical states of 
interest in both ML and Many-Body Systems seem to require only polynomial 
resources 

A 
B 

Low-lying states obey the entanglement 
entropy area scaling law 

𝑆𝐴𝐵 ~ 𝜕𝐴 

Allows for efficient representation with 
Tensor Network States 

R. Orus. Annals Phys. 349 117 (2014) 
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Efficient Representation of States 

Variational Expression of Wavefunction 

G. Carleo & M. Troyer.  
Science 355 602 (2017) 

RBM ↔ TNS Duality 

J. Chen et al.  
PRB 97 085104 (2018) 

Established direct mapping of RBM to 
TNS 
 
Derived conditions under which TNSs 
can be represented as a RBM 
 
Idea: establish cross-fertilization 
between concepts in both domains 
- Quantify expressiveness of RBM via 

entanglement entropy bounds 
- Quantify complexity of quantum 

state via information measures of 
the RBM 

- RBMs may offer a way to 
parameterise the state with fewer 
parameters 
 
 

 



Thank You for  

Your Attention! 
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Quantum Phase Transitions 

Real Space Dimension 

Imaginary Time 
Dimension 

Quantum Classical 

Coherent state path integral formalism 
leads to a low energy effective action 

 

 

in the vicinity of the critical point  

Zero temperature quantum phase transitions 
can be mapped to (d+1) dimensional classical 
phase transitions 

Effect of finite temperature corresponds to 
imposing a finite system size in one dimension 

Classical techniques can be employed to 
understand and study quantum systems 


