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Deep learning has received considerable attention in recent times owing to its success in a vast
variety of applications. An exciting cross-fertilization between deep learning architectures and many-
body physics is also occurring, the reason being that the two are intricately connected to each other.
In this paper, we briefly review the relationship between these two concepts, as well as explore how
this blossoming field of research can lead to exciting new developments in both domains.

I. INTRODUCTION

More is different. In this aptly titled article [1], An-
derson highlighted the notion of emergent phenomena
in complex and many-body systems, noting that as the
size of systems are scaled up, the interactions between
the constituents of the system result in the emergence
of various intriguing phenomena. Many of these are al-
most impossible to predict intuitively based only upon an
elementary understanding of the properties of the indi-
vidual constituents. Rather, “the understanding of these
new behaviours requires research which is as fundamental
in its nature as any other”.

In recent years, there has been an growing appreciation
and recognition of the fact that such emergent phenom-
ena occur throughout numerous hierarchical scales and
contexts in nature – ranging from physics to biology and
even the social sciences, leading to considerable interest
in the study of complex systems.

In particular, the study of quantum many-body sys-
tems is currently one of the most exciting and challeng-
ing problems in contemporary physics research, with the
immense potential to yield not only novel insights into
fundamental physics but also open the door towards the
development promising and innovative new technologies
and applications. Quantum many-body systems predom-
inantly occur in the domain of condensed matter physics,
which in itself is a rapidly expanding field, where the
complex many-body interactions are responsible for the
rich variety of interesting and important physical phe-
nomena occurring in mesoscopic systems, which include
but are not limited to superconductivity, superfluidity,
quantum magnetism, quantum transport, disorder and
localisation, as well as topological effects

Unfortunately, more is not only different, but also ex-
ponential. Although most many-body systems can be
characterised by relatively simple-looking model Hamil-
tonians, they cannot be solved analytically in general,
and must be tackled via approximation schemes or nu-
merical approaches. The key obstacle to direct numeri-
cal methods such as Quantum Monte Carlo schemes lies
in the exponential increase in the dimensionality of the
Hilbert space of the system with the size of the system –
a system composed of N binary spins would require 2N

bits of information to describe, which makes it computa-

tionally expensive in terms of both resources and time,
and practically constrains us to systems of fairly limited
and unrealistically small sizes.

A promising and novel solution for getting around this
problem, which has gained traction only in the preced-
ing few years, lies in the form of applying machine learn-
ing architectures to reformulate the many-body problem.
Naturally, one may question whether this is merely just
part of the passing fad involving the attempted applica-
tion of machine learning to just about any imaginable
situation, inspired rightly or wrongly by the general suc-
cesses of machine learning. While this approach appears
to be rather unorthodox at first glance, it turns out that
deep learning and many-body physics actually share an
intricate connection with each other – and this could pave
the way to not only a powerful means of tackling many-
body systems, but also shed light into the black box of
why deep learning works so well in so many different sit-
uations.

II. APPLICATIONS OF MACHINE LEARNING
TO MANY-BODY PHYSICS

There are numerous areas in which machine learning
has had, or promises to have a significant impact in ad-
vancing the study of many-body systems. These can be
broadly classified into the four major areas below:

(1) Quantum machine learning [2]. Whilst not exactly
an ‘application’ of machine learning to many-body
systems, quantum machine learning is the idea of
speeding up classical machine learning algorithms
such as support vector machines [3, 4] by employing
many-body quantum systems to implement quan-
tum computing protocols such as Grover’s search
algorithm. It is also possible that potential new
quantum algorithms may be devised in the near
future.

(2) Learning to distinguish phases of matter. Given
datasets representing typical configurations of the
system, the machine learns on-the-fly to identify
and distinguish any phases present [5–7]. This is
promising for the study of systems which exhibit
complex phases that do not lends themselves to a
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ready description in terms of clearly defined order
parameters or structure factors, such as topological
phases.

(3) Deep learning as a recommender system. In de-
signing Monte Carlo schemes, one needs to max-
imise the acceptance rate whilst maintain the cor-
rect detailed balance conditions. Notably, the
standard Metropolis algorithm suffers from criti-
cal slowing down near the critical point, and nu-
merous algorithms such as the cluster update al-
gorithms of Swendsen-Wang and Wolff have been
proposed to overcome this problem. Analogously,
there are the ‘worm’ algorithms for the quantum
Monte Carlo simulation of quantum many-body
systems. Rather than relying on the ingenuity of
physicists in coming up with more efficient schemes,
Liu et al. [8] discovered that, without any prior
guidance, a deep learning architecture could learn
how to implement cluster updates, possibly paving
the way for machine-learning-designed Monte Carlo
algorithms that update and adapt on-the-fly.

(4) Applying deep learning architectures directly to
characterise the many-body problem. Beginning
with seminal papers by Bény [9]and Mehta and
Schwab [10] that established a direct mapping be-
tween deep learning (restricted Boltzmann ma-
chines) and the renormalization group, various oth-
ers such as Carleo and Troyer [11] and Gao and
Duan [12] have gone on to employ deep learning
networks to efficiently represent many-body states.
In line with this spirit, novel approaches like the
neural network renormalization group [13] have also
been proposed.

However, in the context of this short review, we will
primarily focus on the last sub-field, for that is where
a deep and non-trivial link between the deep learning
and many-body physics exists, as opposed to what one
may consider merely a generic application of machine
learning.

III. MACHINE LEARNING

The field of machine learning generically involves the
construction of algorithms that enable the network or
architecture of the ‘machine’ to learn from and perform
predictive analysis on data. Another way of framing it is
that machine learning tries to extract the relevant or key
features of the system from the given underlying (mi-
croscopic) data. In particular, a major subcategory of
machine learning, deep learning, is typically composed
of layers of nonlinear processing units that are coupled
together (Fig. 1), not unlike a lattice of coupled spins.

FIG. 1. Graphical representation of a typical neural net-
work with several hidden layers. Image adapted from
http://neuralnetworksanddeeplearning.com/.

Deep learning has recieved considerable attention from
the scientific and engineering communities in recent
years, bolstered in no small part by the resounding vic-
tory of the computer program AlphaGo over the top
human players in the strategy board game Go. The
game Go was widely considered to be one of the cor-
nerstones for artificial intelligence owing to its complex-
ity and large branching factor, and so the success of Al-
phaGo firmly established the power and potential capa-
bilities of deep learning. Technical advances such as the
advent of GPU-based computing, which greatly sped up
processing times, as well as the release of the open-source
machine learning library, TensorFlow, further made ma-
chine learning viable and readily accessible to the general
community at large.

The advent of this machine learning revolution has
generated significant advances in a wide range of fields as
diverse as computer vision, natural language processing
and even pharmaceutical drug design. Although we know
that machine learning works – and works amazingly well
in a variety of situations, the entire architecture is only
understood on a heuristic level, and the reason why it
works so well is not yet fully understood.

Contrary to the common misbelief that the power of
deep learning networks fundamentally stems from noth-
ing more than having a sufficiently large set of adjustable
parameters to fit the possible space spanned by the
dataset (which brings to mind John von Neumann’s cri-
tique that ‘with four parameters, I can fit an elephant,
and with five I can make him wiggle his trunk’ ), the fact
is that deep learning is not just a matter of overfitting
the data. The architecture and design of the features
of the network seem to play a highly nontrivial role in
determining how efficiently the machine can be trained
and how effective it is. Furthermore, on careful exami-
nation, the number of neurons or nodes and parameters
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required to realize a successful deep learning scheme is
significantly smaller than the space spanned by the pos-
sible functions that could describe the data (which un-
surprisingly, scales exponentially with the dimensionality
of the dataset). This leads to the conundrum: why does
deep and cheap learning work so well? The answer, or at
least a possible route to it, as we shall see later, stems
from notions of symmetry and locality that are deeply-
rooted in physics [14].

Restricted Boltzmann Machines

Of particular interest is the class of stochastic energy-
based models known as restricted Boltzmann machines.
The restricted Boltzmann machine has a relatively
straightforward architecture, comprising nodes that are
arranged in two layers – the visible layer {Xi} and the
hidden layer {hi}. Fig. 2 depicts a schematic of the this
architecture.

Each of these nodes (sometimes referred to as spins or
bits) is a binary-valued random variable. The term re-
stricted in the name of these machines refers to us impos-
ing the condition that no direct couplings exist between
nodes belonging to the same layer. Only nodes belonging
to different layers can be directly coupled to each other,
as represented by the lines between the nodes in Fig. 2.
The strength or weight of the coupling between nodes Xi

and hj is denoted by the (symmetric) coupling matrix
Wij . Each node can also be influenced by a local bias
factor, denoted by {ai} for those in the visible layer and
{bj} for those in the hidden layer.

The central defining characteristic of the restricted
Boltzmann machine is then captured in the so-called en-
ergy function

E(X,h) = −
∑
〈i,j〉

wijXihj −
∑
i

aiXi −
∑
i

bihi (1)

associated with a particular configuration of spins
{X,h}, with the probability of the system existing in
this configuration given by

P (X,h) =
1

Z
e−E(X,h), (2)

where Z is the partition function

Z ≡
∑
{X,h}

e−E(X,h). (3)

The probability distribution represented by Eq. 2 is
none other than the Boltzmann distribution commonly
encountered in statistical physics, hence the name given
to this particular architecture.

At this point, it is probably fruitful to pause and exam-
ine the blatantly obvious analogy between the description

FIG. 2. Schematic of a restricted Boltzmann machine. The
machine comprises two layers – the visible layer and the hid-
den layer. Only nodes in different layers are coupled directly
to each other; nodes within the same layer are uncoupled.
Each node can also experience a local bias that varies from
node to node.

of the restricted Boltzmann machine and a typical spin
system characterised by an Ising-type Hamiltonian

HIsing = −
∑
〈i,j〉

JijSiSj −
∑
i

hiSi, (4)

where {Si} are binary variables describing the spin at
the lattice sites {i} (up or down), {Jij} is the coupling
matrix between the spins and {hi} is the local external
magnetic field. The key remaining difference between the
two lies in the stratification of the spins in the restricted
Boltzmann machine to two different layers, which we will
expound upon in great detail later.

From the architecture of the restricted Boltzmann ma-
chine, we observe that each layer is conditionally inde-
pendent (Markov shielding) – that is to say, given the
configuration of the hidden layer {h}, any two nodes in
the visible layer, Xi and Xj , are independent with re-
spect to each other, and vice versa with the roles of the
hidden and visible layers swapped. One can also derive
the activation probabilities of each node or spin to be

P (Xi = 1|h) = σ
[
ai +

∑
jwijhj

]
(5)

P (hi = 1|X) = σ
[
bi +

∑
jwijXj

]
, (6)

where

σ(x) ≡ 1

1− e−x
(7)

is the sigmoid function.
The values and significance of the local biases {ai} and
{bi}, as well as the coupling matrix wij , have hitherto
been undiscussed; in fact determining the values of these
parameters is the key task of the learning procedure.
These usually involve an iterative sequence of steps that
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seeks to minimise the difference between the input dis-
tribution and the output distribution predicted by the
machine (typically characterised by the Kullen-Leibler
divergence). However, we shall not delve into these tech-
nical details here since these bear no direct relation to
the physics that we intend to discuss.

The restricted Boltzmann machine has received much
attention in the physics community owing to some of its
attractive features in comparison to other more general
models: (1) it has in-built notions of spatial locality (in
that only adjacent layers are coupled); (2) it shares a
close connection with the renormalization group [10] and
(3) the existence of efficient algorithms for training.

The representative power of restricted Boltzmann
machines can be further enhanced by stacking layers,
thereby organizing the network of nodes into a deep ar-
chitecture. It can be proven that such an organization
can be faithfully mapped to a deep Boltzmann machine
consisting of an additional third ‘deep’ layer on top of
the usual restricted Boltzmann machine.

IV RENORMALIZATION GROUP

Before moving on to establish the explicit link between
the architecture of the restricted (or deep) Boltzmann
machine and the physics of many-body systems, we need
to first discuss another key concept – that of the renor-
malization group. The renormalization group [15, 16] is
one one of the most significant, if not the most, concepts
underlying the modern understanding of many-body sys-
tems.

The central inspiration for the renormalization group
stems from the curious phenomena of universality in the
critical behaviour of many body systems: systems pos-
sessing very distinct microscopic descriptions can exhibit
the same scaling laws in the vicinity of the critical point
(near a phase transition); these systems are said to be-
long to the same universality class. A canonical exam-
ple would be the correspondence between the liquid-gas
phase transition of simple fluid and a single-axis ferro-
magnet (the Ising model).

These ideas led Wilson [15] to formulate the notion of
a renormalization group flow in which the critical points
are mapped to fixed points of some transformation of the
Hamiltonian or system. Under such a transformation,
which we will denote by Rλ, the new parameters p of
the Hamiltonian are transformed as

p′ = Rλ(p). (8)

In particular, at the critical point, we have

p∗ = Rλ(p∗). (9)

Put simply, at the critical point, the parameters and
functional form of the renormalized Hamiltonian remain
invariant under the transformation.

FIG. 3. The effect of block spin decimation on a 2D Ising
lattice for three different regimes: (i) below the critical tem-
perature, (ii) at the critical temperature and (iii) above the
critical temperature. The black and white regions denote the
up and down spins at each site respectively.

An example of such a transformation is the block-spin
decimation first proposed by Kadanoff. In this scheme,
neighbouring spins are grouped into blocks, each block of
spins is then replaced with a single spin whose new spin
orientation is determined using a majority-rule on the
constituent spins. In essence, we are tracing out some
degrees-of-freedom to form a smeared-out and smaller
lattice (in loose terms, we are steadily zooming out in
how we view the system).

This procedure is qualitatively summed up in Fig. 3,
where the block-spin decimation is performed on a stan-
dard 2D lattice of Ising spins for representative configura-
tions corresponding to three different parameter regimes:
(i) below the critical temperature TC , (ii) close to TC and
(iii) above TC . As the renormalization group transfor-
mations occur, regime (i) gets progressively colder (T
flows or decreases towards the fixed point T ∗1 = 0),
while regime (iii) gets progressively hotter (T flows or
increases towards the fixed point T ∗3 = ∞). Regime (ii)
meanwhile remains relatively invariant under the trans-
formation since it is already at the non-trivial fixed point
T ∗2 = TC .

The spins that are traced out (or summed over) gen-
erate new effective correlations and couplings between
the new spins; in this sense these traced-out spins play
a role akin to the hidden layer in restricted Boltzmann
machines.

V DEEP LEARNING & MANY-BODY PHYSICS

Although much of the work exploring the connection
between deep learning and many-body physics or ap-
plying deep learning techniques to tackling many-body
problems only proliferated in the past few years or so,
these two domains of study actually share a deep rela-
tion dating back decades ago when they were still being
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formulated.

In 1967, Ricciardi and Umezawa [17] proposed a many-
body model attempting to characterize the interactions
between neurons in the brain, demonstrating how this
model could possibly support learning and memory pro-
cessing. Most deep learning networks also drew heavy
inspiration from such many-body representations of neu-
rons (hence the name neural networks), and the Hopfield
network class of random-field Ising spin models is one of
the early successful models of how memory and informa-
tion might be encoded nonlocally in the structure of the
network rather than at local individual sites or neurons.

Why Deep Learning Works so Well

The central problem experienced in both scenarios
(many-body physics and machine learning) is similar in
nature – given a dataset (microscopic details or spin con-
figuration) that is possibility exponential in the space
that it spans, how can we describe or extract the key
features embodied (macroscopic observables and charac-
teristics) using only a polynomial amount of resources
and time?

In the domain of many-body physics, this has been
achieved to a certain degree of success by building upon
ideas from the renormalization group, as well as the spe-
cial properties of the states-of-interest. In most systems,
one is mainly concerned with studying the ground and
low-lying excited states. These states occupy only a small
region of the entire Hilbert space of states, and typically
satisfy the entanglement entropy scaling law, as opposed
to typical thermal states that satisfy the usual extensive
volume scaling behaviour. The relatively low amount
of entanglement present enables these states to be effi-
ciently represented using tensor network or matrix prod-
uct states, which constitute the basis of some of the more
popular numerical schemes today, such as the density
matrix renormalization group (DMRG) in 1D and multi-
scale entanglement renormalization ansatz (MERA) in
2D.

Building on these suggestive analogies between deep
learning architectures, Lin et al. [14] argue that, just
as physical considerations such as symmetry and scaling
behaviour enable physics to be so effective, deep learn-
ing too works so unreasonably well because of constraints
imposed by physics on the properties and nature of real
datasets, “hinging on symmetry, locality, and polynomial
log-probability in data from or inspired by the natural
world.” They further go on to establish a dictionary-of-
sorts that draws direct parallels between various concepts
in Physics and their corresponding counterparts in Ma-
chine Learning (Table I).

Physics Machine Learning

Hamiltonian Surprisal (Self-Information)

Quadratic Hamiltonian Gaussian Distribution

Partition Function Softmax Function

Spin Node (Bit)

Relevant Operator Feature

Irrelevant Operator Noise

TABLE I. ‘Dictionary’ demonstrating between the correspon-
dence between concepts from Physics and their counterparts
from Machine Learning, as put forth by Lin et al. [14]

Direct Correspondence Between RBMs and RG

These observations and somewhat qualitative conjec-
tures put forth by Lin et al. and various others were put
on firm ground by Mehta and Schwab, who were able to
go beyond intuition and establish a direct mapping be-
tween the architecture of restricted Boltzmann machines
and the renormalization group procedure [10]. Notably,
they derived a one-to-one correspondence between the
variation renormalization group transformation operator
Rλ acting on the many-body Hamiltonian and the con-
ditional probability of the hidden spins given the configu-
ration of the visible spins in the corresponding restricted
Boltzmann machine representation.

As an explicit illustration of this correspondence, let
us consider the block-spin renormalization of a 1D Ising
model, where the renormalization group transformation
can be performed exactly [18]. The isotropic 1D Ising
model in the absence of an external magnetic field is de-
scribed by the Hamiltonian

HIsing = −J
∑
i

SiSi+1, (10)

with the associated canonical partition function

Z =
∑

{Si=±1}

∏
i

exp [KSiSi+1] , (11)

where K ≡ βJ .To perform the block-spin decimation, we
trace over all odd spins to get

Z =
∑

{Sj=±1}

∏
j

2 cosh [K(Sj + Sj+1)] , (12)

where we have relabelled the spins. In the next step, we
attempt to rewrite this in the same form as the original
partition function and so demand that

2 cosh [K(Sj + Sj+1)] = [g(K)]
N/2

exp [K ′SjSj+1] ,
(13)
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FIG. 4. Block-spin renormalization on a 1D Ising model. Al-
ternate spins are successively traced out, leading to a new
model that is still described by the same Ising Hamiltonian
but with a different effective coupling constant J (or K).

where K ′ is the renormalized coupling constant. Solving
the set of recursion relations obtained from Eq. (13) leads
to the result

K ′ =
1

2
log [cosh(2K)] . (14)

This process is pictorially depicted in Fig. 4: after
each block-spin decimation step, we recover the same 1D
Ising model, but with a different renormalized effective
coupling constant K(n) that satisfies the recursive rela-
tion

Kn+1 =
1

2
log
[
cosh

(
2K(n)

)]
. (15)

At the same time, let us consider the restricted Boltz-
mann architecture depicted in Fig. 5. When we trace
out the hidden layers successively, it is straightforward
to see that this generates effective couplings between the
nodes in the same layer that obey exactly the same re-
lation as Eq. (15). Figs. 4 and 5 therefore establish a
direct mapping between the two scenarios.

Similar analysis can also be performed for the 2D Ising
model, but since the renormalization group transforma-
tion cannot be performed exactly in closed form, it has
to be performed numerically, as was done by Mehta and
Schwab [10], who also discovered that the structure of
the couplings in the restricted Boltzmann machine rep-
resentation displayed features reminiscent of block-spin
grouping.

Given that finding the ‘correct’ or good renormaliza-
tion group transformation Rλ to use is not an exact sci-
ence, but rather an art. One has to identify which are
the irrelevant degrees-of-freedom and also attempt to per-
form the rescaling of couplings in a tractable manner so
as not to generate an exponentially increasing number of
couplings between the new spins. This naturally leads
to the question of whether the deep learning architecture

FIG. 5. Restricted Boltzmann machine hierarchy correspond-
ing to the RG process depicted in Fig. 4. The bold lines
indicate actual direct couplings between the nodes, while the
dashed lines indicate the effective couplings between nodes
in the same layer should the hidden layer above it be traced
over.

can learn the best renormalization group procedure to
perform.

It turns out that the answer is a resounding ‘yes’:
Koch-Janusz and Riegal proposed and implemented a
deep learning algorithm [19] based on analysing the real-
space mutual information (RMSI) between different parts
of the system, that was able to identify the relevant
degrees-of-freedom in the system to keep while tracing
out the rest in an unsupervised learning context.

VI OUTLOOK

Much work in this nascent field is still ongoing in ar-
eas such as attempting to represent a variational expres-
sion of the many-body wavefunction in terms of restricted
Boltzmann machines [11] or neural networks [12], as well
as further work investigating the full extent of the rela-
tionship between quantum many-body systems and ma-
chine learning paradigms.

In particular, in a recent paper published just a few
months ago, Chen et al. [20] extended Mehta and
Schwab’s result in demonstrating an equivalence be-
tween restricted Boltzmann machines and tensor network
states. They proved that the former can always be rep-
resented in terms of tensor network states, while ten-
sor network states can be mapped to a restricted Boltz-
mann machine representation under certain conditions,
and further provided explicit algorithms for performing
these mappings.

The significance of this lies in the fact that restricted
Boltzmann machines can be parametrized with far fewer
parameters and also lend themselves to training with
established pre-existing machine learning algorithms,
which may be more efficient as compared to current com-
plicated many-body simulation schemes. The represen-

6



PHY256B Term Paper Spring 2018 The Many-Body Physics of Deep Learning

tation in Boltzmann machine architecture also opens up
new windows for more ready analysis of the many-body
state in terms of information measures such as complex-
ity.

Indeed, the cross-fertilization between many-body
physics and machine learning is an exciting endeavour
that promises to bring about revolutionary advances in
the way that we look at both machine learning architec-
tures and many-body systems alike.
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