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When dealing with physical systems in the real world, one might need to determine the causes of sta-
tistical complexity due to environmental variables and how complexity evolves over time. In many of these
systems, we can only observe and measure certain variables over time, and must determine what causal
states exist in the system from this data and how they fluctuate with changes to environmental variables.
Once a description of causal states is created, one can calculate the statistical complexity and draw conclu-
sions on the effects of these environmental variables. This paper tests this idea by analyzing behavior of
a particle undergoing simple harmonic oscillation under different system conditions and showing how the
statistical complexity of the system aligns with this idea.

To create data, simulations were performed with a Langevin dynamics (LD) program. LD is a subset
of molecular dynamics that allows for friction and interaction of the object with the environment through
random collisions. The ODE system is

ṙ = v

mv̇ = f(r, t)− αv + β(t)

with α being the coefficient of friction and β(t) a Gaussian random variable such that

〈β(t)〉 = 0

〈β(t)β(t′)〉 = 2αkBTδ(t− t′)

One can see that this system is dependent on the temperature and coefficient of friction. These two variables
are the ones that will be changed in order to observe changes in the system.

The integrator used was a particular Verlet algorithm developed by Grønbech-Jensen and Farago. Both
equations are correct to second order.

rn+1 = rn + bdtvn +
bdt2

2m
fn +

bdt
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βn+1
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a ≡
1− α

2m

1 + α
2m

and where

βn+1 ≡
∫ tn+1

tn

β(t′)dt′

is a Gaussian random number with 〈βn〉 = 0 and 〈βnβl〉 = 2αkBTdtδn,l. It has been shown by Grønbech-
Jensen and Farago that for a simple, undamped continuous time harmonic oscillator, there is a formal sta-
bility limit of Ω0dt < 2 for this integrator, where Ω0 =

√
κ/m is the resonance frequency oscillator.

Various simulations were run for different temperature and friction scales, from order 0 to 1 with the
forcing function for the simple harmonic oscillator. The simulations were run with spring constant κ = 2.0
for a particle with mass m = 1.0. The time step used was dt = 1.3, just under the maximum time step al-
lowed (dt =

√
2) for the Verlet integrator with the given κ and m. The location of the particle was recorded

at every time step as being to the left (equivalent to a zero) or the right (equivalent to a 1) of equilibrium. The
initial velocity and position for each simulation were chosen from a uniform random distribution on [−1, 1].
Since this is a simple harmonic oscillator, the period of the particle’s oscillation does not change with the
initial energy in the system, so no special considerations were necessary for ensuring that each simulation
would have equivalent behavior. Each simulation was run for over a 100 time steps, but only 35 were used
at most for each parameter set due to time constraints on running analyzing code. Each parameter set had
100,000 iterations each to calculate the probabilities given.

For each set, the transition probabilities were calculated. For example, if the word ’0100’ has already
been observed, we want to know the probability of next observing a ’0’ (hence now having the word ’01000’)
and the probability of next observing a ’1’ (and now having ’01001’). The is calculated by calculating the
conditional probability of seeing the current word of length n given we have seen the same word truncated
to length n− 1. The probabilities that I have given are these transition probabilities.

Detail the results for each scenario. Give tables of transition probabilities, or at least transitions for a
hand full of words for each one.

All were highly symmetric. If it occurred on one side of the tree, it also occurred with the same proba-
bilities on the other side with differences in the thousandths place. (This is the source of discrepancies that
you may see in these tables when probabilities don’t add up quite to 1.)

α = 0.0
In the table below are a sample of the allowed words and their transition probabilities as would appear in the
parse tree.
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The first letter is about 50/50, which makes sense as the initial position is determined with a uniform
distribution of [−1, 1], so there should be equal probability of starting on wither side. From there, there
is an initial "parsing" section for the letters at positions 2,3, and 4. Going down the path that has higher
probability will keep you in the initial parse section, while all of the lower probability paths then go into
a deterministic stretch. In this case, our first initial stretch is length 2, and happens after the parsing gets
the same letter twice (ie sees a 00 or a 11), and the deterministic portion is 10 if 00 or 01 if 11. The last
branching point is about 31/69 (a ratio that is repeated in almost all of the different scenarios). The 30 path
goes to the deterministic length-2 path, while the 60 skips that and continues onto the main pattern with the
length-3 deterministic stretch. The main body of the pattern is that there is a deterministic length-3 segment
dependent on what was just seen and which factors in strongly to the next section. If you had 0 previously,
you will more likely have the deterministic set 010 than 101, and vice versa for having a 1 previously due
to the symmetry. Once you go into the lower probability transition, it appears it’s completely deterministic
from there, with 1010,0101 alternating after that. At the end of the length, you either return back to the
beginning of the same deterministic length or continue onto a longer one. (This pattern is also repeated
in most systems, until washed out by white noise.) In this scenario, it seems that the set up is completely
deterministic at the end. The final deterministic pattern becomes "00101101" in this case. We will need
to analyze longer word lengths here, but that will take time, and I ran out of that here. The probabilities
at splittings seem to be oscillating around 33/66 as time goes on. This structure remained the same for all
temperatures as α = 0 removes both the friction and stochastic properties of the system. In the machine
below, we have 0 < d(t), e(t) < 0.5, as these depended solely upon the word length and not on the actual
previous history.

4



5



T = 0.0, α = 1.0
On the next page are some select words from the allowed words for this scenario. The structure here
is similar to that from before. The first letter is also 50/50, and there is an initial parsing section at the
beginning that last for 6 additional letters. After, there is a deterministic length-6 section, and you repeat
the deterministic length-6 section as long as you continue on the high probability pathway. If you hit the
low-probability pathway, you then go into a length-22 deterministic segment. The letter structure of the
deterministic portions is the same as before, as an alternating sequence. The deterministic lengths appear
to get longer and longer as time goes on. This is equivalent to the particle slowing down from friction but
not gaining more chaos from the temperature. One could rationalize that in the limit the set is completely
deterministic alternating loop, but we never actually will achieve that.
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T = 1× 10−5, α = 1.0
The system is non-Markovian and cannot be represented in terms of transitions any more. A different style
will be required in order to describe this system with this algorithm.

1010000000 0.4995 0.5081 0.8416 0.9173 0.0698 0.0216 0.6475 0.1990 0.4474 0.3529
1010100000 0.4995 0.5081 0.8416 0.9173 0.9302 0.9105 0.1961 0.1630 0.6595 0.3027
1010001000 0.4995 0.5081 0.8416 0.9173 0.0693 0.0216 0.3525 0.5385 0.6607 0.3514

T = 1× 10−12, α = 1.0
The patterns and the probabilities remain exactly the same as for T = 0 until around letter 9, whereas it
switches to the same pattern as appear for T = 1 × 10−5. It is reasonable to assume that change occurs in
the system due to the velocity and spring force becoming too small compared to the temperature effect as
time goes on.

Conclusions
These appear to match our expectations and tell us more about the internal structure. LD method predicts that
the stochasticity of the simulation is dependent upon having both α and T greater than 0, as we saw when
the system could no longer be represented as Markovian. LD also predicts that relaxation to equilibrium
is dependent upon having no stochasticity but with some dampening, as we saw when the periodicity was
increased in the deterministic lengths of the system. With this partitioning of physical space, we were able
to reasonably observe changes to the periodicity, and should therefore be able to reliably draw conclusions
with this method for other potentially periodic systems from experimental data.
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