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Abstract

I review constructing piecewise simplicial manifolds using efficient meth-

ods for constructing Delaunay triangulations. I then evaluate the use of

the Metropolis-Hastings algorithm in the Causal Dynamical triangulations

program. I highlight inefficiencies and propose solutions.
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1. Introduction

Nevertheless, due to the inneratomic (sic) movements of electrons, atoms would have
to radiate not only electromagnetic but also gravitational energy, if only in tiny
amounts. As this is hardly true in nature, it appears that quantum theory would
have to modify not only Maxwellian electrodynamics, but also the new theory of
gravitation. [1]

–Einstein, 1916 Approximative Integration of the Field Equations of Gravitation, p.209

Quantum gravity is, perhaps, the preeminent hard problem [2] remaining in theoretical physics,
and has been worked on for many years [3].

Although difficult to test experimentally, a quantum theory of gravity appears to be the key
to resolving several important questions, such as the black hole information paradox. [4] In many
cases, the conclusions of the quantum theory reverse the results of the classical theory (black
hole complementarity [5], wormhole no-go theorems [6]). Therefore, only a quantum theory of
gravity will tell us the ultimate fate of life, the universe, and everything (with apologies to the
late Douglas Adams). [7]

Causal Dynamical Triangulations (CDT) [8–12] is a useful approach to quantum gravity. It
is based on the Regge action [13], which describes General Relativity on simplicial manifolds
similarly to the Einstein-Hilbert action on differentiable manifolds, and has been independently
validated in 3 and 4 dimensions. [14]

Using the Metropolis-Hasting algorithm [15], one of several Markov Chain Monte Carlo
(MCMC) methods, allows for the analysis of complex distributions in higher dimensions. [16]
It is also relatively straight forward to apply to calculations of the path integral.

However, and this is the central point of this paper, Metropolis-Hastings algorithms suffer
from known problems such as exponentially long convergence times to stationary distributions
and sensitivity to step size (from 23% to 70% is given as a suitable acceptance rate [17,18]); both
may occur within the context of CDT.
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Methods such as slice sampling, Hamiltonian Monte Carlo, and simulated annealing are other
methods that may be used instead, and which have comparative advantages over Metropolis
algorithms. But each has respective drawbacks:

Slice sampling [19] adapts to the characteristic of the sample distribution. However, it must
be able to sample distributions directly, which is not always possible. It also runs into difficulties
at higher dimensions, as it is non-obvious how to obtain “efficient” samples.

Hamiltonian Monte Carlo (HMC) computes expectations by exploring a continuous parameter
space of probability distributions. [20]. In certain implementations it has been shown to be
extremely fast and efficient [21], but it’s not necessarily clear how to set this up for the Regge
action. Additionally, the parameters may be hard to tune, and it does not handle multimodality
well, and “crumpled” or “polymer” phases are generic features of Monte Carlo simulations. [22]
Nonetheless, I think this is a possibility worth exploring in a future paper.

Like HMC, simulated annealing requires a global parameter space to optimize. [23] Imple-
menting this in the context of CDT has not, to my knowledge, been explored.

In this paper, I examine efficiencies in the Causal Dynamical Triangulations approach by:

1. Efficiently initialize using Delaunay tetrahedralization; [24]

2. Apply minimal Deterministic Finite Automata, ε-machines from Computational Mechanics
[25], to model entropy rate and other calculations;

3. Improve the acceptance rate of Metropolis-Hastings via iteration of von Neumann’s proce-
dure

2. Background

The Einstein equation describes the curvature of spacetime Rµν in terms of the stress-energy-
momentum tensor Tµν :

Rµν −
1

2
Rgµν = 8πGNTµν (2.1)

The Riemann tensor is given by:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (2.2)

Where the Affine connection Γλµν is defined by:

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) (2.3)

And the (cylindrically symmetric) metric is:
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Figure 1: Parallel Transport on a spherical surface by Fred the Oyster, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=35124171

gµν =


e2λ 0 0 0
0 −e2(ν−λ) 0 0
0 0 −e2(ν−λ) 0

0 0 0 − r2

e2λ

 (2.4)

Rρ
σµν can be thought of as encapsulating the intrinsic curvature (see Figure 1).

From the Riemann tensor one obtains the Ricci tensor using Rµν = Rρ
µρν , and likewise the

Ricci scalar is R = Rµ
µ using the Einstein summation convention.

Given the Ricci scalar the Einstein-Hilbert action is:

IEH =
1

16πGN

∫
d4x
√
−g(R− 2Λ) (2.5)

Where GN is Newton’s Gravitational constant and Λ is the cosmological constant.
Extremizing the Einstein-Hilbert action produces the equations of motion.

δIEH = 0→ Rµν −
1

2
Rgµν = 8πGNTµν (2.6)

In quantum mechanics, we are interested in the transition probability amplitude 〈B|T |A〉,
which is the conditional probability of being in state B having previously been in state A. This
is generally computed using the path integral.

〈B|T |A〉 =

∫
D[g]eiIEH (2.7)
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Figure 2: A 2D Delaunay triangulation (left) Not a 2D Delaunay triangulation (right)

Such path integrals are typically not directly computable, for a number of reasons. Quantum
Field Theory uses perturbative summation techniques such as Feynman diagrams, but these
require a notion of renormalizability for various infinite divergences, and gravity has been shown
to be definitively non-renormalizable. [26]

In 1961 Regge developed his calculus replacing smooth differentiable manifolds with simplicial
manifolds, which obey the following properties:

1. closed: ∀ n-dimensional simplices in the manifold each (n − 1)-dimensional subsimplex of
that simplex is also in the manifold;

2. connected: any two n-dimensional simplices share at most one (n− 1)-dimensional subsim-
plex;

3. geometric realization: ∃ a functor between the simplicial set and the category of compactly-
generated Hausdorff topological spaces

From here on, simplicial manifolds will be referred to as triangulations, as is common in the
literature. (Simplicial complexes obey the first two properties but lack a geometric realization, and
may also be encountered.) Of special note are Delaunay Triangulations, which are well-behaved
simplicial manifolds with a circumspherical property of member simplices as seen in Figure 2.

The discrete version of the Einstein-Hilbert action is the Regge action:

IR =
1

8πGN

(∑
hinges

Ahδh − Λ
∑

simplices

Vs

)
(2.8)

And the discrete version of the path integral is (after a Wick rotation to imaginary time):
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〈B|T |A〉 =
∑

triangulations T

1

C(T )
e−IR(T ) (2.9)

Here, we take a sum over all inequivalent triangulations. In 1991 Pachner [27], building
on Alexander’s work in the 1930s [28] showed that elementary operations, now called Pachner
moves, could transform a triangulation T to another manifold T ′ homeomorphic to T . The set of
all inequivalent triangulations could be then be explored via a series of Pachner moves. [29]

Equation (2.9) takes advantage of the distinctly causal nature of Causal Dynamical Trian-
gulations (along with the well-defined analytic continuation). The triangulations are foliated by
hypersurfaces of distinct time. Using this innovation allows an explicit calculation of the CDT
action, which has been done for 2-, 3-, and 4-dimensions. The subject of this paper is the 3D
moves (Figure 3) and corresponding action (Equation 35 from [9]):

I
(3)
CDT = 2πk

√
αNTL

1

+ N
(3,1)
3

[
−3karcsinh

(
1√

3
√

4α + 1

)
− 3k

√
αarccos

(
2α + 1

4α + 1

)
− λ

12

√
3α + 1

]
+ N

(2,2)
3

[
2karcsinh

(
2
√

2
√

2α + 1

4α + 1

)
− 4k

√
αarccos

(
−1

4α + 1

)
− λ

12

√
4α + 2

] (2.10)

Where α is the length of the timelike edges (spacelike edges are length 1), k = 1
8πGN

, and
λ = k ∗ Λ.

To evaluate Equation (2.9), we use the Metropolis-Hastings algorithm as follows:

1. Selection: Pick a Pachner move;

2. Acceptance: Make that move with a probability of a = a1a2, where

a1 =
move[i]∑
i

move[i]
(2.11)

a2 = e∆ICDT (2.12)

Note that we have divided out the measure factor 1
C(T )

in Equation (2.9), which we didn’t

know how to evaluate anyway. (It is a combinatorial weight of the symmetry group of a particular
triangulation T , for which we’d have to know details of the distribution we are exploring.)

After thermalization, the Metropolis-Hastings algorithm gives us the distribution of triangu-
lations for computing the path integral. We can then perform measures on these representative
ensembles to calculate properties such as spectral dimension. [30,31]

Empirically derived at present, but another consideration for optimization.
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Output AlphabetOutput Alphabet

(2,3) & (3,2)

(4,4)

(2,6) & (6,2)

Simplices involved Move name

(3,1) & (2,2)

2 (1,3) & 2 (3,1)

(1,3) & (3,1)

Figure 3: 3D Pachner moves in CDT

3. Dynamical System

A Hidden Markov Model (HMM) [32,33] is characterized by:

The set of states Q;

The observables V = {vk};
The initial states π(i) = P (qi|t = 0) which is the probability of being in state qi at t = 0.

The transition probabilities A = {aij} = P (qj|t + 1) which is the probability of entering
state qj at t+ 1

The observables probabilities B = {bj(k)} = P (vk(t)|qj(t)) which is the probability of
producing observable vk(t) given state qj(t).

For CDT, the states are the triangulations (Figure 4) and the observables are the moves
(Figure 3).

This is an important simplification.
When performing Pachner moves, the set of moves are conducted on particular simplices

within the triangulation. A (2,3) and (3,2) move cannot be considered mutually inverse, because
it is overwhelmingly likely that they will be done on different simplices; which then describes
inequivalent triangulations.

But from the perspective of computing Equation (2.10), the (2,3) move is the mutual inverse
of the (3,2) move, because the pair increase or decrease by one the count of simplices and timelike
edges respectively. The same applies to the (2,6) and (6,2) moves. The (4,4) move is self-inverse
and does essentially nothing, but is still distinct from the overwhelmingly likely no move.
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Set of StatesSet of States

256 timeslices, 222,132 vertices,
 2,873,253 faces, 1,436,257

simplices

Figure 4: A large but representative foliated Delaunay Triangulation computed by [34].

As we are interested in V = {(2, 3), (3, 2), (2, 6), (6, 2), (4, 4), None} this distinction preserves
unifilarity in our representations of the HMM, and the depiction of the ε-machine is intuitively
the bi-infinite line segment.

In Figure 5 the states are labelled by their offset from the starting state. To unpack this
diagram, let’s look at the starting state Q, which is described by the following six transitions:

Q→ Q+ 1 emitting a (2,3) move

Q→ Q− 1 emitting a (3,2) move

Q→ Q+ 4 emitting a (2,6) move

Q→ Q− 4 emitting a (6,2) move

Q→ Q emitting a (4,4) move

Q→ Q emitting a no-move

We can likewise describe the same six (overlapping) transitions for all of the {Q−N, ..., Q−
1, Q,Q + 1, Q + N}. It’s easy to see that this behaves like a 1D random walk, a much simpler
system than the set of Pachner moves on a 3D triangulation.
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Figure 5: The ε-machine for CDT out to a (2,6) and 2 (2,3) moves and their inverses computed on [35]

.
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4. Methods

Our first method, given in the previous section, is modeling the Metropolis-Hastings algorithm
with an ε-machine to gain insight into the particular properties of the inferred distributions from
CDT.

Next, we look at more efficient algorithms in Computational Geometry, such as those provided
by CGAL.

Most implementations of CDT are concerned only with the combinatorial data which specifies
simplices, vertices, and the incidence and adjacency relations between them (Figure 6). However,
for future work that may want to impose mass or curvature and fixed distances in CDT, geometric
information becomes relevant, especially for 2+1 and 3+1 spacetimes. [36,37]

CDT implementations initialize their spacetimes by starting with a small set of cells with
spherical or toroidal topology, and then making a large number of volume-increasing and foliation
preserving moves. This very regular structure is then thermalized by a very large number of
additional moves (typically 50-100,000 passes, where a pass attempts a number of moves equal
to the total number of simplices in the triangulation).

However, modern algorithms can directly generate 3D Delaunay triangulations very rapidly.
CGAL is capable of triangulating 1 million points in about 6 seconds on a laptop, and recent
algorithms have generated three billion tetrahedra in one minute on a start of the art laptop! [38] In
my CDT implementation, I create concentric radii of points which are tetrahedralized. By marking
each point with it’s time value on creation, successive sweeps are able to remove those tetrahedra
that do not span two adjacent timeslices. The removed tetrahedra force a re-triangulation of
the remaining points (however, the algorithms are able to conduct this in parallel for localized
regions), and the process is repeated until only validly foliated simplices remain.

The resulting triangulation is already randomized; future work will determine how much
thermalization is necessary.

Further optimizations are possible.
In my implementation, prediction of the final number of simplices is difficult due to many

passes which throw them away simplices. That is, asking for some number of simplices often
produces many more than desired, and sometimes substantially less, due to seemingly random
effects.

Or are they?
During this process of re-tetrahedralization, I have noticed unexpectedly divergent behavior

that implies both unseen regularities and random, possibly chaotic processes. Using parame-
ter optimization methods from Comet.ml [39] and TensorFlow [40], I have run experiments to
determine optimal hyperparameters for a given output.

These experiments solve the following problem: given initial radius, radial spacing, desired
timeslices, desired number of simplices, and a distribution function of points per timeslice, what
is the number of simplices obtained, and which combination of factors minimizes the difference
between desired and actual. (Related ongoing questions include developing good cost functions
for optimization and good distributions).

The last method employed is von Neumann’s method of improving the take rate. This essen-
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Move probabilities
(2,3) 0.005
(3,2) 0.036
(2,6) 0.031
(6,2) 0.00200
(4,4) 1∗

Table 1: Observed simulation values of move probabilities

ε-machine Information Theoretic values
Markov Order ∞
Cryptic Order 0
Excess Entropy 3.68736404907
Entropy Rate 2.40009879218
Predictive Information Rate 2.017745851
Residual Entropy Rate 0.382352941176

Table 2: Calculated values from the Computational Mechanics Python Module (CMPy) [43]

tially solves the question: how do I make an unfair coin into a fair one? [41] In the case of CDT,
the probability of making a given move is vanishingly small: a small simulation with 16 timeslices
and 490K simplices typically produces move probabilities given in Table 1. Note these are very
far away from the Metropolis ideal.

Von Neumann’s Procedure seems to be related to the Entropy rate. Further investigation and
understanding on this point is necessary.

5. Results

For the limited ε-machine representing the CDT HMM in Figure 5, Table 2 lists the calculated
parameters.

The ε-machine model itself may also be used for further simulations.
The results of hyperparameter optimization for number of simplices requested versus number

obtained are available for public review at https://www.comet.ml/acgetchell/cdt-plusplus.
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Figure 6: CGAL cell combinatorial data structure [42].
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Figure 7: https://www.xkcd.com/1831/

6. Conclusion

A lot of work remains to be done, but it is apparent that the principles of Computational
Mechanics, Information Theory, and modern algorithms can provide a real boost in computing
efficiency over and above throwing more hardware and computer time at an admittedly intractable
problem. A (perhaps apocryphal) story related to me first hand about the race to sequence the
human genome is instructive: one of the world’s largest supercomputers at the time, with custom
hardware was nevertheless beaten by a plucky group of university researchers writing extremely
efficient algorithms in C. [44]

I hope that time spent learning to teach computers how to calculate quantum gravity efficiently
may have great impact.
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