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Abstract 

The chaotic behavior in quantum system has a long history for research but is still a controversial 

topic. Quantum many-body system like spin ½ chain is believed to be a good environment for 

research for both theoretical and practical significance, and recently the evolving interests on 

many-body localization in spin chain also made many important progress: by introducing different 

patterns of defects to spin chain, one can observe different chaotic or nonchaotic phases. Here I 

employ the powerful pattern generation tool -Machine to study quantum chaos in spin ½ chain, 

and focus on the relationship between measurement information decomposition of different 

machines and corresponding phases in spin chain. Bound information is found to have potential to 

link the two parts together. 

 

1 Motivation 

The problems of chaos and relaxation have a fundamental importance in the study of many-body 

classical and quantum systems. The most notable signatures that define the phenomena of chaos 

in classical mechanics is deterministic randomness and exponential sensitivity to initial conditions, 

both are related to the concept of unpredictability, caused by the nonlinearity of the system 

dynamics. However, quantum dynamics are fully described by Schrodinger’s Equation, which is 

linear[1]. And bounded quantum system has discrete energy levels, which prevents the appearance 

of exponential sensitivity in some ways by breaking the continuity of phase space. In this case, 

could there still exists chaos in quantum many-body systems? If so, how could we define it? How 

should we describe it? 

Quantum spin chains are prototype quantum many-body systems. They are employed in the 

description of various complex physical phenomena because of its computational simplicity. By 

focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based 

on the analysis of the eigenvalues, eigenstates, and symmetries of the system, we could study how 

these properties indicate chaos. Moreover, by introducing different Zeeman splitting on different 



spin sites[2],[3], we could trigger chaos in the system, and the introduce process could be done by 

the powerful tool -machine. How could different patterns lead to different types of 

chaotic/nonchaotic systems? How are the properties of machine in terms of information theory 

affect the resulted quantum system? Could we predict the possible system behavior directly from 

the machine? 

 

2 Background 

2.1 Classic and Quantum Chaos 

The unpredictable randomness behavior, known as chaos has been studied since long time ago. 

Edward Lorenz, a notable researcher in this field describe chaos by the following: “When the 

present determines the future, but the approximate present does not approximately determine the 

future.” The first part of his description indicates that the dynamics of the system is fully 

determined, and all the dynamics could be written down in closed form. For a classic chaotic 

system, whose states could be represented by a point in continuous phase space, if the evolution 

starts at two slightly different initial conditions, the leading future will be totally different. As the 

second part of Lorenz’s description, without specification of the initial conditions up to arbitrary 

accuracy, we could not accurately predict the future. This property of classic chaos is known as 

the exponential sensitivity of initial conditions. One can quantitively describe this behavior by the 

well-known Lyapunov exponents, which measure the rate of divergence of a bunch of trajectories 

along several directions in phase space, and hence characterize the sensitivity to initial conditions. 

Positive and negative Lyapunov exponents correspond to directions of expansions and contractions 

in phase space respectively. A conservative system has an equal number of positive and negative 

Lyapunov exponents. If the system is ergodic, then the Lyapunov spectrum does not depend on 

where the trajectory is started from. The directions in phase space corresponding to conservative 

quantities (integrals of motion) are associated with zero Lyapunov exponents. A system is 

technically called chaotic if it has at least one positive Lyapunov exponent. 

In classic system, chaotic phenomena require intrinsic nonlinearity inside the dynamics that make 

the system nonintegrable. Quantum dynamics, on the other hand, are fully described by 

Schrödinger equation which is fundamentally linear. A bounded quantum system possesses a set 

of discrete energy levels and hence the evolution is quasi-periodic. The occupancies of those levels 

are time-invariant and play the role of the integrals of motion in an integrable classical system. In 

classical chaotic systems, the exponential sensitivity is driven by the continuity of the underlying 

phase space, which allows to specify the initial conditions up to an arbitrary accuracy. On the other 

hand, the notion of a point in phase space does not exist in quantum mechanics. Furthermore, the 

definition of integrability in a quantum system is controversial until today[4]. Therefore, it’s 

difficult to find a widely acknowledged definition of quantum chaos. Instead, for different quantum 

systems, there are indeed different indicators of quantum chaos, or signatures of quantum chaos. 

For example, one could also describe the quantum chaos in terms of sensitivity in time-dependent 

systems. Since the initial conditions of quantum system are vectors in Hilbert space, one could 



measure the sensitivity to initial conditions by calculate the overlap between two slightly different 

vectors and the rate of spread of an initial wave packet. Besides, another possible generalization 

can be given in terms of the stability of the wavefunction of the system under perturbations to the 

Hamiltonian itself, known as quantum fidelity: 

𝜗 =< 𝜑(𝑡)|𝜑′(𝑡) > 

In which 𝜑(𝑡) evolved by the Hamiltonian 𝐻 and 𝜑′(𝑡) by 𝐻 + 𝛿𝐻.  

 

 

Fig. 1: Wigner-Dyson (left) and Poisson (right) distribution. 

 

Except for that, another good way to describe quantum chaos would rely in the distribution of 

systems’ energy level. The energy levels of chaotic quantum systems and the eigenvalues of 

random matrices exhibit similar statistical properties, such as level repulsion. The quantity of level 

spacing 𝑃(𝑠), where s is the spacing between two adjacent levels, depends on the universality class 

to which this system belongs, which, in turn, depends on its underlying symmetries. For example, 

systems exhibiting time reversal symmetry exhibit the same statistics as the Gaussian Orthogonal 

Ensemble (GOE) of real symmetric matrices. The spacings of their eigenvalues is characterized 

by the Wigner-Dyson distribution 𝑃(𝑠) =
𝜋𝑠

2
 𝑒−𝜋𝑠2/4(see Fig.1). Integrable systems, on the other 

hand, exhibit level clustering. The statistics of their energy level spacings follow a Poisson 

distribution, 𝑃(𝑠) = 𝑒−𝑠. This property is sometimes used as a definition for quantum integrability, 

especially in quantum systems lacking a corresponding classical limit. 

 

2.2 Spin ½ Chain 

The spin ½ Heisenberg model finds applications in several other contexts. It is a key model in 

studies of quantum phase transition, superconductivity, localization in disordered systems, as well 

as the dynamics and thermalization of correlated one-dimensional lattice systems. The interplay 

of disorder and interactions in quantum systems can lead to several intriguing phenomena, amongst 



which the so-called many-body localization has attracted a huge interest in recent years[5]. 

Specially, in the spin ½ chain, the disorder is described by different Zeeman splitting energy at 

different spin sites. The whole Hamiltonian could be written as below: 

𝐻 = ∑ 𝑆𝑖 ∙ 𝑆𝑖+1 − ℎ𝑖𝑆𝑖
𝑍

𝑖∈[1,𝐿]

 

where Si is the spin at site i and hi is the Zeeman splitting energy.  

With the introduce of defects, the spin chain could have two different phases. The chaotic phase 

will be nonintegrable and have an important behavior: thermalization. Thermalization requires that 

different parts of the system exchange energy efficiently, such that states with spatially non-

uniform energy density can relax to thermal states. Thus, energy transport is necessary and 

thermalizing systems are expected to be conducting. Often, thermalizing quantum systems are 

referred to as ergodic, because during their evolution they explore all configurations allowed by 

the global conservation laws. In contrast to chaotic systems, another many-body localization(MBL) 

phase has a general mechanism by which quantum systems can avoid thermalization. The 

localization and the breakdown of ergodicity in MBL systems occur because strong quenched 

disorder effectively makes energy exchange processes between different degrees of freedom “off-

resonant"[6]. 

 

2.3 -Machine 

A presentation of a given process is any state-based representation that generates the process: it 

produces all and only the process’s word sequences and their probabilities. In the following we 

consider processes generated by finite hidden Markov models (HMMs). For a given process, while 

there may be many alternative HMMs, there is a unique, canonical presentation—the process’s -

machine. The recurrent states S of a process’s -machine are known as the causal states. The causal 

states are the minimal sufficient statistic of the past for predicting the future. An -machine is a 

type of HMM satisfying three conditions: unifilarity, probabilistically distinct states, and 

irreducibility. Unifilarity means that from each state there is at most one next state reached on a 

given symbol. Probabilistically distinct states means that for every pair of states, there is at least 

one word for which the probabilities of observing word starting from those states differ. 

Irreducibility implies that the internal Markov chain over the causal states is strongly connected 

and minimal in the sense that it is not possible to make a smaller unifilar HMM that generates the 

process. 



Therefore, given a pattern of number sequence, the -machine generated it could represent its 

regularity information most efficiently. With our knowledge until now, we know that different 

patterns of defects in a spin chain could lead to different phases, and the most efficient way to 

describe and generate patterns is the -machines. So could there be any mutual information 

between -machine and resulting chaotic or nonchaotic phases? Or is there any possibility to 

directly predict the chaos by -machine in terms of information theory? That’s the main question 

to explore in this paper(see Fig. 2). 

 

Fig.2: Logic between -machine and different phases in spin ½ chain. 

 

3 Methods 

All the results and graphs in this work are generated by code in python. For the Hamiltonian of 

spin ½ chain, Heisenberg interaction model is used (XXX model, Jx=Jy=Jz=1.0), and Nearest-

Neighbor Approximation is considered in this work. Besides, open boundary conditions are used 

for all the calculations (open chain), where the sum goes from site n = 1 to site L − 1, an excitation 

on site 1 can move only to site 2 and from site L to L − 1.  

Considering a spin chain, one could see two extreme cases: all spins up(or down) and half-half. 

The first one is too trivial for study since its ensemble has only one dimension. In this work, I 

consider two cases: half-half and one-third spins up(or down, two cases are symmetric). And the 

system size will be L=15 or 16, which is the biggest number a personal laptop can handle. 

Besides, the defect pattern is set to be binary (defect exists or not exists), and defect energy is set 

to be 0.5 if exists. All patterns are generated by -machines. In this work, three kinds of machines 

are used: Biased Coin(Noisy), Even and Golden Mean. At least five realizations are calculated for 

each machine, and then average to avoid coincidence. And for each realization, density of 

states(DOS) is calculated first(see Fig. 3) and then take the energies which have a DOS over 50% 

of the maximum number to further calculate the level spacing distribution(LSD), since the energies 

with lower DOS should play less important role and could be source of errors. 



 

Fig. 3: Example of the DOS of a spin chain (up spin = 7, down spin = 8, defect at 5th site). 

 

4 Results and Discussions 

4.1 Simple Realizations 

It’s important to firstly verify some simple realizations(see Fig. 4) of spin chains, which could 

provide some reliable references for future work.  

Fig. 4: LSD of some simple realizations(L=16): half-half, no defect, nonchaotic(left); half-half, defect at 

1st site, nonchaotic(middle); half-half, defect at middle(8th site), chaotic(right). 

 



First the LSD of a clean chain is calculated, it’s not surprising that the distribution follows Poisson 

distribution and system is not chaotic. Next a defect is added to the first site, since the open 

boundary condition is used, the excitation on site 1 can move only to site 2. Therefore, the defect 

effect is localized around the 1st site and could not propagate further to the whole chain, and the 

system is still nonchaotic. Finally, a single defect is introduced at the very middle site where it 

could have the most significant influence on the whole chain. And as a result, the LSD becomes 

Wigner-Dyson distribution and the spin chain becomes chaotic. It’s compatible with intuitive 

thought that unlocalized defect will trigger chaos, other realizations also indicate that single or a 

few defects introduced except at the first or last site tend to lead to a chaotic system. 

 

4.2 Finite Size Effect 

While calculate more realizations, some interesting behaviors are found as below(Fig. 5). The LSD 

of those system are not obviously nonchaotic or chaotic, instead the distributions are some curve 

between the two cases. 

Fig. 5: Examples of finite size results 

 

The effect could be explained by the finite size of the spin systems. In the finite size system, the 

phase transition happens gradually instead of abruptly, and thus there will be some intermediate 

states which do not belongs to either phase. And these realizations typically have some short-range 

symmetries which will disappear if the system size is infinite, but they still could provide some 

information for us. Here I introduce a deviation of the distribution from Poisson distribution, which 

sums up the distance from Poisson distribution of every bin at the middle. A bigger deviation 

indicates more chaotic system. 

 



4.3 Biased Coin(Noisy) Machine 

First Biased Coin(Noisy) process is considered(Fig. 6). Biased Coin Machine is one of the most 

commonly used machines for many situations. Basically it will generate a sequence of random 

independent variables 0 or 1, and the probability of generating 0 or 1 at each digit is the same. 

Here I used symbol 1 to indicate defect exists at corresponding site. 

Fig. 6: Scheme of Biased Coin Machine(P: probability of defect at each site) 

As one can easily see, if P is close to 0, the generated sequence will be basically a sequence of 0s, 

and the corresponding spin chain will be clean. Therefore the deviation will decrease with P near 

P = 0. And similarly, if P is close to 1, there is highly probably that every site is defect and the 

chain could be another kind of “clean”. The deviation should decrease with P increase near P = 1. 

As a result, the most chaotic case should happen near P = 0.5, and the calculation results could 

verify the assumption(Fig. 7). 

Fig. 7: Deviation of Noisy chain versus probability 

 

4.4 Golden Mean Machine 

Golden Mean Process is another common process worth studied(Fig. 8). Biased Coin Machine is 

one of the most commonly used machines for many situations. The rule for Golden Mean Process 

is that generated sequence will have no consecutive 1s: if the current symbol is 1, the next symbol 



will be 0 with 100% probability. When applied this rule to the spin chain, the chain will have no 

consecutive site of defects. 

 

 

Fig. 8: Scheme of Golden Mean Machine. 

 

As the P becomes larger, the generated sequence will have more occurrence of 10 pairs. The 10 

pairs could be regarded as a bigger single site with mean field approximation, and the system will 

become more clean and symmetric with more occurrence of 10 pairs. Actually a chain of 

recurrence 01 pairs is nonchaotic based on the calculation results. The deviation will 

monotonically decrease with P increases, which is verified by calculation(Fig. 9). The slightly 

bigger case at P = 0.3 in one-third case could be explained by the limited number of realizations. 

Fig. 9: Calculation results of Golden Mean chain 

 



4.5 Even Machine 

Even Process(Fig. 10) is like a counterpart of Golden Mean: the rule for Even Process is that all 

sequence of 1s will have even number. If the current symbol is 1 and previous symbol is 0, the 

next symbol must be a 1. The property could be seen as consecutive 11 pairs, and the corresponding 

spin chain will have only consecutive defects. 

 

Fig. 10: Scheme of Even Machine 

 

If P is close to 0, the chain will be basically clean and nonchaotic. And if P is close to 1, there will 

be more occurrence of 11 pairs, making the whole chain consists of mostly 1s. Therefore the 

deviation should decrease with P when P is close to 1. The two cases are verified by calculation 

results(Fig. 11). 

Fig. 11: Calculation results of Even chain 

 

Another interesting part is that the deviation will have a drop at the middle in both cases. After 

observing the specific realizations, one can find that at P = 0.5, it is highly probable that the chain 

will have a few 11 pairs separated by 0s. This kind of realizations might have some symmetry due 



to the finite size of chains, which suppresses the chaotic behaviors. On the other hand, separated 

11 pairs could act as localization centers, which gives rise to nonchaotic many-body localization 

phases. 

 

5 Conclusion and Prospective 

Although there is currently not an agreement on the definition of chaos in quantum world, quantum 

chaos indeed has different important signatures in different systems. For many-body system like 

spin chain, the statistical properties of energy level such as level spacing distribution have quiet 

significance for describing quantum chaos. By direct calculation of Hamiltonians for different spin 

chains, one can prove that the introduce of defect could lead to phase transition between MBL 

phase and ergodic phase in this system, and different patterns of defects can lead to different phases. 

By utilizing the powerful tool -Machines, one can see that different machines will give rise to 

different phases. Even the topological structures of machines are the same, like Golden Mean and 

Even machines, the resulting chaotic behaviors are totally different, which requires us to explore 

deeper by views of information behind the topological structure and relate the properties of 

machine to the resulting different phases. The information decomposition of a process[7](Fig. 12) 

proposed by Crutchfield could provide meaningful methods for this research. 

 

Fig. 12: Measurement decomposition diagram of a process 

 



 

  

 

 

 

Fig. 13: Measurement decomposition of h of Golden Mean Process as edge probability p changes 

 

In terms of information theory, the Golden Mean and Even process have same entropy rate h but 

different decompositions bound information b and residual information r, which leads to 

difference on the way of information sharing between current and future. And furthermore, 

decompositions b and r won’t be a constant for a process when the edge probability changes(Fig. 

13). For the Golden Mean process, one could see that as P increases, r also increases, which means 

the ephemeral information existing only for the present would occupy a bigger part of entropy rate 

and the information relevant to predict the future decreases. Therefore, the unknown part, or 

randomness of the process decreases as P increases, and less randomness means less chaotic, which 

is consistent with the calculated results. 

However, to strictly prove the relationship between bound information and chaos, there are more 

concrete work need to do. This work only shows the potential relation in an intuitive way and 

provide more possibilities for this research field. 

 

GM process 
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