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Using information-theoretic techniques developed by V.S. Vijayaraghavan, R.G. James and J.P.
Crutchfield,1 this work analyzes the collective behavior of the two-dimensional Antiferromagnetic
Ising Model on a triangular lattice. The thermodynamic entropy of the system is decomposed into
constituent pieces as a function of temperature both in the absence of an external field, in which
case the lattice is frustrated, and in the presence of an external field.

I. INTRODUCTION

This articles considers the entropic properties of the
Antiferromagentic Ising Model on a triangular lattice in
two-dimensions (TAFIM). The TAFIM is an interesting
system to study for several reasons. In the absence of
an external field it is a frustrated spin system with fi-
nite non-zero entropy H0 = 0.3231

ln(2) = 0.4661 bits at zero

temperature, and no finite temperature phase transition.
However, introducing an external field induces a second-
order phase transition from a disordered paramagnetic
phase, to an ordered phase at a critical temperature
denoted as Tc.

2 Studying how different types entropic
quantities vary as a function of temperature in these two
regimes gives valuable insight into the role entropy plays
in characterizing the behavior of classical spin systems
and, more generally, the behavior of complex spatially
extended systems with many coupled degrees of freedom.
My results will show that if the thermodynamic entropy
density h is decomposed into a local entropy density r
and a bound entropy density b, as T → 0 we see that
r > b.

II. A FRUSTRATED ISING MODEL

The TAFIM is described by the Hamiltonian (energy
function)

H = J
∑
〈i,j〉

σiσj −B
N∑
i=1

σi (1)

where σi = ±1 denotes a spin in the lattice. The first
sum runs over all nearest-neighbors interactions char-
acterized by an antiferromagnetic interaction constant
J > 0, and the second sum runs over all N spins in
the system, coupling them to an external field B. In
the absence of an external field (B = 0) the system is
frustrated, having an infinitely degenerate ground state
in the thermodynamic limit, resulting in a non-zero en-
tropy of H0 = 0.3231

ln(2) = 0.4661 bits at zero temperature.3

The frustration is a direct result of the antiferromagnetic
nature of the nearest-neighbor interaction, and the un-

derlying triangular lattice geometry. FIG. 1 displays a
single triangle of interacting spins, showing that if one
spin is spin-up (red) and the another spin is spin-down
(blue), then the total energy of the triangle is E = −J ,
regardless of of whether the third spin is up or down. It is
this type of degeneracy, present across the entire spatially
extended lattice, that causes the frustration, resulting in
a non-zero entropy at zero temperature.

FIG. 1. Frustrated Triangle

Introducing a non-zero external field break the spin-
symmetry of the system, lifting the degeneracy of the
ground state. It also introduces a finite-temperature
second-order phase transition from a paramagnetic
phase above Tc, to an ordered phase below Tc, usually
denoted (

√
3 ×

√
3). To understand how this ordered

phase is structured it is important to first realize that
the triangular lattice is not a bipartite graph, but is
rather a tripartite graph, meaning it can be split into
three distinct sub-lattices (FIG. 2). In the ordered phase
two of the three sub-lattices have the same spin, while
the third sub-lattice has the opposite spin, giving the
full lattice a net magnetization of m = 1

3 . FIG 3. shows
the phase diagram for this system in the B − T plane,
displaying the phase boundary between the disordered
paramagnetic phase and the ordered (

√
3 ×
√

3) phase.2
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FIG. 2. Tripartite Triangular Lattice: each of the letters A,
B and C denotes one of the three sub-lattices.

FIG. 3. Phase diagram of antiferromagnetic Ising Model on
a triangular lattice.2

III. AN ENTROPIC DECOMPOSITION OF
CLASSICAL SPIN SYSTEMS

Before I review the different entropic quantities that
will be studied in this paper, it is worth spending a mo-
ment specifying notation. In this article σ will denote a
specific lattice spin configuration, and σ will specify the
set of all possible configurations such that σ ∈ σ. A spe-
cific spin in the lattice is given by σi where i ∈ Z∩ [1, N ]
and N is the size of the lattice. Finally, we will denote
the lattice with a single spin σi removed as σ\i. All en-
tropies are computed assuming that the TAFIM is in the
canonical ensemble (fixed temperature and lattice size).
Therefore the Boltzmann distribution p(σ) = 1

Z e
−H(σ)/T

gives the probability of a lattice configuration σ occur-
ring, where Z is the partition function that normalizes
this distribution. Finally, we define the magnetization of

the lattice as m = 1
N

∑N
i=0 σi.

With these definitions in hand we first define the ther-
modynamic entropy density that is traditionally used in
thermodynamics and statistical mechanics,

h = − 1

N

∑
σ∈σ

p(σ) log2 p(σ). (2)

Next, we specify an isolated spin entropy1 given by

H[σ0] = −p(↑) log2 p(↑)− p(↓) log2 p(↓), (3)

where the probability of an up-spin is give by p(↑) =
1+m
2 . Therefore, H[σ0] is the entropy associated with

treating each spin as an entirely independent spin that
behaves like a biased coin.

Next we define the localized entropy density1 as

r = − 1

N

N∑
i=1

H[σi|σ\i]

r = − 1

N

N∑
i=1

H[σi|σnn].

(4)

This expression is simplified using that fact that the en-
tropy of a given spin conditioned on the rest of the lat-
tice H[σi|σ\i] is equal to entropy of that same spin con-
ditioned only on its nearest neighbors H[σi|σnn], given
that the AFIM Hamiltonian only includes nearest neigh-
bor interactions. The localized entropy r describes how
much of the entropy density h is localized to that single
spin and not shared with its neighbors. It is now nat-
ural to then define a quantity called the bound entropy
entropy1 given by

b = h− r, (5)

which describes what fraction of a given spin’s total en-
tropy is shared with its neighbors and, by extension, the
rest of the lattice.

There are two final entropic quantities that will be con-
sidered in this paper. The first is the total correlation
density1 given by

ρ = H[σ0]− h. (6)

Note that this quantity goes to zero in the limit that
T → ∞ and h → H[σ0]. Therefore, it make sense to
think of ρ as a measure of how much structure is present
in a spin system. Lastly, we define the enigmatic entropy
density1

q = ρ− b. (7)

This quantity is more challenging to interpret than the
others, but can be roughly described as a measure of
structure not captured by the entropy density h. FIG 4.
provides a useful visualization displaying how these five
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FIG. 4. Entropic Decomposition1

FIG. 5. Neighborhood template about a site σ0.

entropic quantities are related to each other.

IV. METHOD

The entropic quantities described in the previous sec-
tion are estimated using a representative samples of prob-
able lattice configurations generated using a Monte Carlo
simulations. The Monte Carlo simulations used in this
work modeled a 32×32 TAFIM using Metropolis-Hasting
accept-reject criteria to decide whether or note to flip a
spin. All estimates of entropic quantities were calculated
using a saved sample of 10, 000 lattice configurations at
a given temperature. In the case of zero external field
a configuration was saved every 10 sweeps through the
lattice, while with a non-zero external field of B = 1
a configuration was saved every 100 sweeps through the
lattice.

It is now possible to estimate h using the method out-
lined in Ref [3]: by constructing a neighborhood template
about a selected spin σ0 in such a way that as this tem-
plate grows infinitely large it splits the lattice in half, it
has been shown that

h = lim
M→∞

H[σ0|σ1, σ2, . . . , σM ]

h = lim
M→∞

[
H[σ0, σ1, . . . , σM ]−H[σ1, . . . , σM ]

]
,

(8)

where M is the size of the neighborhood template. For
a system like the AFIM that only has nearest-neighbor
interactions this limit converges very rapidly. In fact, by
constructing a template of only five spins about a given
lattice sites, as shown in FIG. 5, it is already possible
to very accurately estimate the entropy density h using
the 10,000 sampled lattice configurations. It is similarly
possible to directly calculate estimates for H[σ0] and r

using the saved configurations. At this point ρ, b and q
can be calculated by taking differences.

V. RESULTS AND DISCUSSION

Studying the entropic properties of the TAFIM is in-
teresting because it is a frustrated lattice with finite non-
zero entropy at zero temperature.

FIG. 6. Frustrated Antiferromagnetic Ising Model on a Tri-
angular Lattice

FIG [6] shows how the different entropic quantities
vary as a function of temperature; it is worth noting
that, as expected, h → H0 as T → 0. It is also
obvious that in this limit the localized entropy density
r is larger than the bound entropy density b. This
intuitively makes sense as the largest portion of the
zero-temperature entropy H0 should be associated with
the spin-symmetry of the frustrated “third” spin in
a triangle, where the energy of the lattice does not
change regardless of its orientation. Another interesting
feature is that the bound entropy b is non-monotonic as
a function of temperature, with an apparent maximum
at Tb = 1.30 ± 0.05. The fact that this behavior has a
maximum at a finite temperature even in the absence
of a phase transition is puzzling. An analysis of the 1D
Ferromagnetic Ising Model in Ref. [1] similarly found
that b has a maximum value at a finite temperature Tb
even though there is no phase transition.

Next we consider the AFIM on a triangular lattice
in the presence of an external field B = 1. Recall
that in the presence of an external field the system
is no longer frustrated and has a second-order finite
temperature phase transition from a paramagnetic phase
to the (

√
3 ×
√

3) phase. By studying the behavior of
the specific heat cv and magnetic susceptibility χ as a
function of temperature at B = 1, shown in FIG. 7, we
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FIG. 7. Specific Heat and Magnetic Susceptibility vs. Tem-
perature for B = 1

see that the critical temperature is Tc = 0.925 ± 0.025,
which is in good agreement with the phase diagram
displayed in FIG. 3.

Now let us consider how the entropy of the triangular
AFIM varies with temperature in the presence of an ex-
ternal field, keeping in mind that for B 6= 0 that h → 0
as T → 0. As observed previously when B = 0, FIG. 8
shows that once again r > b, although both of these value
now approach zero as the temperature goes to zero. It is
also the case that b is once more non-monotonic with a
maximum value at a finite temperature Tb = 1.30± 0.05.
This result is puzzling as one might expect that Tb and
Tc should equal each other, even though it is clearly the
case that Tb > Tc. An analysis of the Ferromagnetic
Ising Model on a square lattice in two-dimensions (FIM)
in Ref. [1] also found that Tb > Tc. However, that anal-
ysis showed that ρ and q are both maximized at Tc for
the FIM. That is clearly not the case for the triangular
AFIM with an external field: both ρ and q monotoni-
cally decrease with increasing temperature. The reason
for this difference is that the isolated spin entropy pro-
vides a hard upper bound for both ρ and q in the FIM

FIG. 8. For B = 1

where m → 0 and H[σ0] → 0 as T → 0 for T < Tc. For
the TAFIM in an external field as T → 0 then m → 1

3
and H[σ0]→ 0.918 bits; note that the behavior of H[σ0]
in FIG. 8 appears consistent with this bound.

VI. CONCLUSION

Having described the decomposition of a classical spins
system’s thermodynamic entropy density h into a local
entropy density r and bound entropy density b, it is found
that for the frustrated TAFIM as T → 0 and h → H0

that r > b. Moreover, both with and without an applied
external field B the bound entropy has a maximum value
at a finite temperature denoted Tb. In the case of an ex-
ternal field B = 1, for which there is a finite temperature
phase transition at Tc, we see that Tb > Tc. This result
is consistent with a similar analysis of the FIM.1 How-
ever, unlike the FIM where both ρ and q are maximized
at Tc, for the triangular AFIM in an external field both
these quantities decrease monotonically with increasing
temperature.

The different entropic quantities studied in this paper
give valuable insight into structural dynamics of spatially
extended classical spin systems. However, there is clearly
a need for further investigation. There is no clear un-
derstanding of what underlying dynamic determines the
temperature Tb at which the bound entropy density b is
maximized. Another possible extension of the work pre-
sented in this paper would be to replace H[σ0] in the
entropic decomposition outlined in this paper with the
slightly modified quantity

H[σ0|S] =
∑
α

H[σ0|Sα] (9)
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where sum runs over distinct sub-lattices. The reason
this slightly modified definition would be interesting to

study is that unlike the isolated spin entropy H[σ0] de-
fined in this paper, H[σ0|S] → 0 as T → 0 even in the
case of antiferromagnetic order.
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