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Project work based on a series of papers by Jim Crutchfield, Melanie Mitchell, et al. 
(1993-1998) http://csc.ucdavis.edu/~evca/evca1/papers.htm#EvCA

Additional thanks to Adam Rupe for his CA simulator python code

http://csc.ucdavis.edu/~evca/evca1/papers.htm#EvCA


CA Framework
One dimensional CA operates on a lattice of N cells (with periodic boundary 
conditions) over a k-state alphabet

Each cell simultaneously updates its configuration based on the values in its 
neighborhood, which will be all cells within a fixed radius r

The CA rule is defined by the lookup table, which tells the cells how to update in 
each of the k2r+1 neighborhoods

i.e. rule 10010010 with k = 2 r = 1 111  110  101  100  011  010  001  000
  1      0     0       1     0      0      1      0



Genetic Algorithm
Want to find CA that perform certain function

Rule space is too big to search exhaustively (          possible rules)

Use a Genetic Algorithm:

 

kk2r+1

● Start with an initial population (size p) of rule strings
● Each generation evaluate the CA rules with a fitness function
● Some top scoring proportion E of the population is copied over
● Rest of the new generation is created by random crossover between two of 

these “elite” strings, along with a mutation in each rule site with probability m
● After running for G generations, hope to find CA rules that can perform the 

function well



Majority Classification Task
Given an arbitrary initial configuration (k=2), want the CA to recognize if the 
starting state is majority 0 or 1 by converging to a stable state of all 0 or all 1, 
respectively

Non-trivial problem because of need to identify this global property given the 
relatively small fixed radius

Naive solution attempt: “Local Majority” Rule. Each cell conforms to the state that 
is the local majority in its neighborhood



Local Majority Rule

Reaches steady state with bands of all 0 or all 1

(radius r = 3)



GKL Rule
(Initial Condition A: 55% 1s) (Initial Condition B:  45% 1s)



GKL Rule
k = 2 r = 3 CA invented by Gacs, Kurdyumov, and Levin (but not for this purpose)

Each cell updates to the majority between itself and the cell one and three spaces 
to the right (if the cell is a 1) or left (if the cell is a 0)

Solves majority classification through domain / particle interactions

Correctly classifies ≈ 81% of random length N = 149 initial conditions

(random initial conditions are binomially clustered around initial density 0.5, the 
hardest to classify)

Proven that a CA cannot solve the majority classification perfectly



Majority Classification GA
Fitness function takes i = 100 initial conditions (with uniformly distributed density) 
of size N = 149 and evolves them for t = 320 time steps using the given rule

Fitness score is the proportion of these conditions that converge to the majority

Used population size p = 100, E = 20% of the population carried over each 
generation, mutation rate m = 0.032, and ran for G = 50 generations

These parameters all similar to those used in the previous work

The successful GA runs all found block expanding strategies (13 of 15 runs, where 
the other 2 runs were stuck at a fitness of 0.5)



White Block Expanding CA

(Initial Condition A: 55% 1s) (Initial Condition B:  45% 1s)



Black Block 
Expanding CA

(Initial Condition B:  45% 1s)(Initial Condition A: 55% 1s)



Block Expanding CAs

Asymmetric solutions where most neighborhoods converge to one color, but large 
blocks of the second color expand to eventually dominate the whole space

Relies on correlation between large blocks of a color existing and that color being 
the majority of the initial configuration

Does well on fitness sets with uniform initial densities, but worse on random initial 
configurations than GKL (above rules get ≈ 66% of random N = 149 initial states)

Not robust: as N → ∞, success rate → 50%, unlike particle methods

Reference papers had evolved some more advanced particle strategies, but only 
on 9 of 300 GA runs



Synchronization Task
Given arbitrary initial condition (k=2) want the CA to reach a periodic state of all 0 
followed by all 1

Non-trivial task because have to resolve phase discrepancies

Same parameters used as before, with changed fitness function

Found multiple solutions that achieved perfect fitness scores and also were able to 
perform perfectly on ≈ 100% of random N = 149 initial conditions

All successful solutions use domain / particle interactions to resolve these phase 
discrepancies



Evolved Synchronization CA

(Initial Condition B)
(Initial Condition A)



Domain Interactions Resolve Phase Discrepancies

S
S

DD

SS : create D domain
SS : create D domain
SD or SD : period 2, velocity 0
DS or DS : period 6, velocity 5/6 
DS or DS : period 2, velocity -5/2
SD or SD : period 6, velocity 5/2
D / D interactions depend on 
relative phase

D domain expands when 
between opposite phases, 
contracts when between same 
phases



Extensions to the Previous Work
The above results all replicated what was found in the literature

Next I looked at increasing the alphabet size k to 3 for the above tasks

The initial conditions are still over the first two letters, and the fitness goals are still 
the same, but now the rule can use a third letter in its intermediate computation

To balance for the increased complexity of larger alphabet, looked at radius r = 1 
and r = 2



Majority Classification: k = 3, r = 1 

Uses 3rd letter for better block expanding, 
only expands blocks of size 4+

Fitness score ≈ 0.78 (compared to 0.51 
for best ECA), but still only gets 50% of 
random initial conditions

(Initial Condition A: 55% 1s)



Majority Classification: k = 3, r = 2 

More improved block expanding

Fitness score ≈ 0.93 and classifies ≈ 65% of 
random states (comparable to my best k = 2 
r = 3 block expanding scores)

k = 2 r = 2 trial had best fitness ≈ 0.85 and ≈ 
54% of random states

(Initial Condition A: 55% 1s)



Synchronization: k = 3, r = 1 

Multiple similar rules evolved that achieved perfect fitness scores and correct 
classification on ≈ 100% of initial conditions

Synchronizes extremely fast without having to propagate information all the 
way across the lattice



This rule always syncs the initial row to be the black part of the phase

The third letter is used at the boundaries in such a way that the in phase domain 
regions always expands out and the out of phase regions. It is only used on rows 
when the correct phase is white and incorrect phase is black, and acts to shield 
the incorrect phase from affecting surrounding cell



(10)* is another 
domain, which is 
annihilated on the left 
by the correct phase 
domain

For the synchronization task, we see that increasing the alphabet creates a 
qualitatively different type of solution, which is much more efficient 



Future Goals
Improve program speed by writing the code in C instead of Python, and set the 
code up to run in parallel. Results from this project were strongly limited by 
computer hours, and my GA data sets were smaller than the original papers

Move to 2-dimensional CAs

Explore new fitness tasks. Want to try a new letter of static cells in the initial 
condition that the CA has to evolve around (i.e. a CA trying to propagate through a 
maze or connect nodes like in the Travelling Salesman Problem)

Catch up on the 20 years of relevant literature between now and the cited papers
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