
Evolving Cellular Automata

Eric Severson
NCASO Project Presentation

June 8, 2017

Project work based on a series of papers by Jim Crutchfield, Melanie Mitchell, et al.
(1993-1998) http://csc.ucdavis.edu/~evca/evca1/papers.htm#EvCA

Additional thanks to Adam Rupe for his CA simulator python code

http://csc.ucdavis.edu/~evca/evca1/papers.htm#EvCA

CA Framework
One dimensional CA operates on a lattice of N cells (with periodic boundary
conditions) over a k-state alphabet

Each cell simultaneously updates its configuration based on the values in its
neighborhood, which will be all cells within a fixed radius r

The CA rule is defined by the lookup table, which tells the cells how to update in
each of the k2r+1 neighborhoods

i.e. rule 10010010 with k = 2 r = 1 111 110 101 100 011 010 001 000
 1 0 0 1 0 0 1 0

Genetic Algorithm
Want to find CA that perform certain function

Rule space is too big to search exhaustively (possible rules)

Use a Genetic Algorithm:

kk2r+1

● Start with an initial population (size p) of rule strings
● Each generation evaluate the CA rules with a fitness function
● Some top scoring proportion E of the population is copied over
● Rest of the new generation is created by random crossover between two of

these “elite” strings, along with a mutation in each rule site with probability m
● After running for G generations, hope to find CA rules that can perform the

function well

Majority Classification Task
Given an arbitrary initial configuration (k=2), want the CA to recognize if the
starting state is majority 0 or 1 by converging to a stable state of all 0 or all 1,
respectively

Non-trivial problem because of need to identify this global property given the
relatively small fixed radius

Naive solution attempt: “Local Majority” Rule. Each cell conforms to the state that
is the local majority in its neighborhood

Local Majority Rule

Reaches steady state with bands of all 0 or all 1

(radius r = 3)

GKL Rule
(Initial Condition A: 55% 1s) (Initial Condition B: 45% 1s)

GKL Rule
k = 2 r = 3 CA invented by Gacs, Kurdyumov, and Levin (but not for this purpose)

Each cell updates to the majority between itself and the cell one and three spaces
to the right (if the cell is a 1) or left (if the cell is a 0)

Solves majority classification through domain / particle interactions

Correctly classifies ≈ 81% of random length N = 149 initial conditions

(random initial conditions are binomially clustered around initial density 0.5, the
hardest to classify)

Proven that a CA cannot solve the majority classification perfectly

Majority Classification GA
Fitness function takes i = 100 initial conditions (with uniformly distributed density)
of size N = 149 and evolves them for t = 320 time steps using the given rule

Fitness score is the proportion of these conditions that converge to the majority

Used population size p = 100, E = 20% of the population carried over each
generation, mutation rate m = 0.032, and ran for G = 50 generations

These parameters all similar to those used in the previous work

The successful GA runs all found block expanding strategies (13 of 15 runs, where
the other 2 runs were stuck at a fitness of 0.5)

White Block Expanding CA

(Initial Condition A: 55% 1s) (Initial Condition B: 45% 1s)

Black Block
Expanding CA

(Initial Condition B: 45% 1s)(Initial Condition A: 55% 1s)

Block Expanding CAs

Asymmetric solutions where most neighborhoods converge to one color, but large
blocks of the second color expand to eventually dominate the whole space

Relies on correlation between large blocks of a color existing and that color being
the majority of the initial configuration

Does well on fitness sets with uniform initial densities, but worse on random initial
configurations than GKL (above rules get ≈ 66% of random N = 149 initial states)

Not robust: as N → ∞, success rate → 50%, unlike particle methods

Reference papers had evolved some more advanced particle strategies, but only
on 9 of 300 GA runs

Synchronization Task
Given arbitrary initial condition (k=2) want the CA to reach a periodic state of all 0
followed by all 1

Non-trivial task because have to resolve phase discrepancies

Same parameters used as before, with changed fitness function

Found multiple solutions that achieved perfect fitness scores and also were able to
perform perfectly on ≈ 100% of random N = 149 initial conditions

All successful solutions use domain / particle interactions to resolve these phase
discrepancies

Evolved Synchronization CA

(Initial Condition B)
(Initial Condition A)

Domain Interactions Resolve Phase Discrepancies

S
S

DD

SS : create D domain
SS : create D domain
SD or SD : period 2, velocity 0
DS or DS : period 6, velocity 5/6
DS or DS : period 2, velocity -5/2
SD or SD : period 6, velocity 5/2
D / D interactions depend on
relative phase

D domain expands when
between opposite phases,
contracts when between same
phases

Extensions to the Previous Work
The above results all replicated what was found in the literature

Next I looked at increasing the alphabet size k to 3 for the above tasks

The initial conditions are still over the first two letters, and the fitness goals are still
the same, but now the rule can use a third letter in its intermediate computation

To balance for the increased complexity of larger alphabet, looked at radius r = 1
and r = 2

Majority Classification: k = 3, r = 1

Uses 3rd letter for better block expanding,
only expands blocks of size 4+

Fitness score ≈ 0.78 (compared to 0.51
for best ECA), but still only gets 50% of
random initial conditions

(Initial Condition A: 55% 1s)

Majority Classification: k = 3, r = 2

More improved block expanding

Fitness score ≈ 0.93 and classifies ≈ 65% of
random states (comparable to my best k = 2
r = 3 block expanding scores)

k = 2 r = 2 trial had best fitness ≈ 0.85 and ≈
54% of random states

(Initial Condition A: 55% 1s)

Synchronization: k = 3, r = 1

Multiple similar rules evolved that achieved perfect fitness scores and correct
classification on ≈ 100% of initial conditions

Synchronizes extremely fast without having to propagate information all the
way across the lattice

This rule always syncs the initial row to be the black part of the phase

The third letter is used at the boundaries in such a way that the in phase domain
regions always expands out and the out of phase regions. It is only used on rows
when the correct phase is white and incorrect phase is black, and acts to shield
the incorrect phase from affecting surrounding cell

(10)* is another
domain, which is
annihilated on the left
by the correct phase
domain

For the synchronization task, we see that increasing the alphabet creates a
qualitatively different type of solution, which is much more efficient

Future Goals
Improve program speed by writing the code in C instead of Python, and set the
code up to run in parallel. Results from this project were strongly limited by
computer hours, and my GA data sets were smaller than the original papers

Move to 2-dimensional CAs

Explore new fitness tasks. Want to try a new letter of static cells in the initial
condition that the CA has to evolve around (i.e. a CA trying to propagate through a
maze or connect nodes like in the Travelling Salesman Problem)

Catch up on the 20 years of relevant literature between now and the cited papers

References
Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield, "Revisiting the Edge of Chaos: Evolving Cellular Automata to
Perform Computations", Complex Systems 7 (1993) 89-130

Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber, "Dynamics, Computation, and the 'Edge of Chaos': A
Re-Examination," In Complexity: Metaphors, Models, and Reality, G. A. Cowan, D. Pines, and D. Meltzer (eds.), Santa Fe
Institute Studies in the Sciences of Complexity, Proceedings Volume 19, Addison-Wesley (1994) 497-513.

Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber, "Evolving Cellular Automata to Perform Computations:
Mechanisms and Impediments", Physica D 75 (1994) 361-391.

James P. Crutchfield and Melanie Mitchell, "The Evolution of Emergent Computation", Proceedings of the National
Academy of Sciences, USA 92:23 (1995) 10742-10746.

Rajarshi Das, Melanie Mitchell, and James P. Crutchfield, "A Genetic Algorithm Discovers Particle-Based Computation in
Cellular Automata", In Parallel Problem Solving from Nature-III, Y. Davidor, H.-P. Schwefel, and R. Männer (eds.),
Springer-Verlag (1994) 344-353.

Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson, "Evolving Globally Synchronized Cellular
Automata", In Proceedings of the Sixth International Conference on Genetic Algorithms, L. J. Eshelman (ed.), Morgan
Kaufmann (1995) 336-343.

Melanie Mitchell, James P. Crutchfield, and Rajarshi Das, "Evolving Cellular Automata with Genetic Algorithms: A Review of
Recent Work", In Proceedings of the First International Conference on Evolutionary Computation and Its Applications
(EvCA'96), Russian Academy of Sciences (1996).

Wim Hordijk, James P. Crutchfield, and Melanie Mitchell, "Embedded-Particle Computation in Evolved Cellular Automata",
In Physics and Computation '96 (Pre-proceedings), T. Toffoli, M Biafore, and J. Leão (eds.), New England Complex
Systems Institute, (1996) 153-158.

Wim Hordijk, James P. Crutchfield, and Melanie Mitchell, "Mechanisms of Emergent Computation in Cellular Automata", In
Parallel Problem Solving from Nature-V, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel (eds.), Springer-Verlag
(1998) 613-622.

James P. Crutchfield. Melanie Mitchell, and Rajarshi Das, "The Evolutionary Design of Collective Computation in Cellular
Automata", Machine Learning Journal, submitted.

Land, Mark; Belew, Richard (1995). "No perfect two-state cellular automata for density classification exists". Physical
Review Letters. 74 (25): 1548–1550.

