Layered e-Machines

G. Mikaberidze*
Department of Physics, University of California, Davis, CA, 95616, USA
(Dated: June 16, 2017)

e-Machines are optimal predictors of minimal size. This means nothing can beat them at optimal
prediction. The goal of this project is to explore a new structure: Layered e-Machine, and compare
it with standard e-Machine when the optimal prediction is impossible for practical reasons. I use
stock market prices for different goods as input data. One part of the data sequence is used to infer
the structure and parameters for both e-Machine and Layered e-Machine, the rest of it is used to

check how well each predictor works.

I. INTRODUCTION

Mathematical structures that can learn are already an
important part of our every day life. Virtual Personal As-
sistants (Siri, Google Now, Cortana etc.), Purchase Pre-
dictions (Target, Amazon etc.), Spam Detection, Online
Customer Supports, Smart Home Devices, all of these
are either continuously learning and becoming better or
at least have been trained using real world data. These
algorithms are already serving millions of people and are
becoming more and more important.

How can mathematical structures learn? How do even
living organisms learn? If we find the answer to the first
question, it will also explain the second one as brain can
simulate mathematical processes. Thus if mathemati-
cal structures can be trained, than surely brains can be
trained too.

Suppose we have some stationary process that gener-
ates information: sequence of symbols. We are observing
the information, but the process is hidden from us. Turns
out that there are ways to extract knowledge about the
source by looking at the symbols only [1]. The goal is to
have a smallest structure that would still capture all the
available information about the source. Such structures
exist and they are called e-Machines. e-Machines are the
smallest optimal predictors.

If e-Machines are the smallest optimal predictors, why
do not we use them for example for face recognition pur-
poses? One could convert images into strings of symbols,
after each such string there would be a 1 if it contained
a face and 0 otherwise. One could use a sequence of such
strings to train an e-Machine and then use it to predict
next symbol after inputting any image. This digit would
be the best possible guess about a face being in the pic-
ture. As a side effect this machine would also be able to
complete a partially seen image to the best of theoretical
possibility. It is clear from this description that this kind
of structure would have to be much larger than what our
smart-phones can handle.

Therefore in such cases we have to forget about optimal
prediction and build structures, that are much smaller
and still predict well. Obviously, for any such structure

* mikaberidze@Qucdavis.edu

there is a corresponding e-Machine which will do the same
job and is not larger. The problem is finding such ma-
chines, because there are too many possibilities.

Now let us look at this problem from the other point of
view. Let us discuss music as an example. The alphabet
is chords and it is a discrete sequence. If we try to use
Bayesian Inference [2] to find the best suiting epsilon ma-
chine of limited size, we will have to limit our self to very
small e-Machines: only several states. This means, that
we will not be able to capture long scale behaviour. But
in case of even simple music, it is obviously important to
keep track of major / minor, repeating theme and so on.
In other words, it’s possible, that for practical purposes
one would prefer to capture some long range behavior
first and leave out some short scale details. And this is
the main idea behind Layered e-Machines: infer struc-
ture from symbol sequence in the giving priority to long
range behavior.

According to Christopher C. Strelioff and James P.
Crutchfield [2], inferring structure from data series is also
an integral to many fields of science ranging from bioin-
formatics [3, 4], dynamical systems [5-8], and linguistics
[9, 10] to single-molecule spectroscopy [11, 12], neuro-
science [13, 14], and crystallography [15, 16].

II. BACKGROUND

e-Machines are directed graphs with each node rep-
resenting an internal state of the source and each edge
representing a possible transition with a corresponding
output symbol and probability. It is unifilar: if we know
current state and see a transition symbol, there can be no
ambiguity regarding the next state. The process can be
stochastic, and at each point the future has different pos-
sibilities with corresponding probabilities (called future
morph). Saying that system is in a given state means, it
has a given future morph.

To infer e-Machine for a given data string, one can use
Bayesian inference. This algorithm takes data string and
possible e-Machines (without transition probabilities). It
finds the best suiting machine and tunes transition prob-
abilities. One can extract the most probable machine or
one can sample machines according to their likelihoods.



IIT. DYNAMICAL SYSTEM

For this project I chose stock market prices for different
goods as a dynamical system. The main reason for this
was that the state number is probably immensely large.
Also the alphabet is just simple numbers and it can be
simplified even more by reducing it to binary alphabet:
1 - price went up; 0 - price went down. It is also a
good option to use ternary alphabet: if the price didn’t
change more than some given threshold, we assign 1; if
it went higher than threshold, assign 2; if it went down
lower than threshold, assign 0. The process is clarely
non stationary and this could cause some problems, but
it could cause same kind of problems for both e-Machine
and Layered e-Machine, and the only thing that I am
interested in for this project is the comparison of these
two.

The stock markets have changed very much in 215
century, thus to make the comparison less random, I will
cut off prices for last 17 years.

IV. METHODS
A. Constructing Layered ¢-Machines

Although long scale behavior can be important, e-
Machines do not allow for capturing it before all the
shorter scale behavior is captured. The problem is, that
we do not have enough computational power to deal with
behavior on all the scales completely. That is why in Lay-
ered e-Machines I am constructing separate e-Machines
to deal with different scale behaviors.

The idea is simple: we have to pick some beaning size
n and some beaning function f, such that f maps n sym-
bols from original alphabet to 1 symbol (alphabet of this
new symbol might be different). Now we have to split
the original data into sub-strings of length n and map
each sub-string to a new symbol using f.

X X X2X3X4X5X6X7X8X9X X

f f f

Yo Ys Y,

FIG. 1. Beaning example with n = 4.

If we had enough computational power to do optimal
predictions, there would not be any need of making a
Layered e-Machine in the first place, consequently f is
supposed to be lossy, many-to-one function. It is sup-
posed to capture some important aspect of long scale
behavior and get rid of some details. For example, in

case of stock market prices, a good beaning function
should be obtained just by comparing first and last sym-
bols in a sub-string: f(substring) = 1 if price went up;
f(substring) = 0 if price went down.

Once we have the new sequence, we can build an e-
Machine for it using Bayesian inference. This machine
will learn long scale behavior of the system. The hope is,
that short scale behavior of the process depends on the
long scale state. A good example is music here: the short
scale behavior is heavily affected by long scale state being
"major” or "minor”. Therefore, for each state of long
scale machine we can build a new, short scale machine.

FIG. 2. Visualization of Layered e-Machine.

The number of short scale machines is the same as the
number of states in long scale machine. We have to train
each of them separately using Bayesian Inference. To
infer short scale machine, we should use the sub-strings
of original data that were produced while the long scale
machine was in this specific state.

Bayesian Inference takes in a single string of data sym-
bols, but for short scale machine we have a number of
short sub-strings. One straightforward solution to this
problem would be to concatenate the sequences and use
it as a single string. This approach has two problems:
one is, that the sequence contains a lot of unreal transi-
tions that never happened, so we would be training an
e-Machine with wrong data; another is that we would
not have a good starting state for short scale machine.
Bayesian Inference would give the best starting node but
it would be tested only once at the very beginning of the
concatenated string. We need the best starting state to



use every time when large scale machine activates this
short scale one.

A good solution for the problem described above is to
make use of a new resetting symbol: instead of just con-
catenating the sequences, now we will sandwich the re-
setting symbol between them, and from every candidate
machine we will require, that this symbol is only used
for transferring any state to the starting state. Therefore
the number of candidate machines and computation time
stays unchanged. Now, every time the machine meets
this new symbol, it resets and continues training with
the new sub-string from the start state.

FIG. 3. Adding a reset transitions with reset symbol N.

Other than training data, Bayesian Inference also takes
in a set of candidate e-Machines. Standard set is topo-
logical e-Machines. This is the set of machines that have
different future morph topologies for each state, i.e. the
future morphs for each state have to differ not only by
transition probabilities, but also by allowed symbol se-
quences. In case of stock market prices, anything can
happen, therefore all sequences are possible from any
state. This means, that future morphs have to have the
same full topology for every state (full support). The
only topological machine with full support is the single
state e-Machine. Therefore we need to construct our own
set of candidate machines.

For our purposes we need only full support e-Machines.
To construct all such machines of given size k, we need
to start with a graph of k£ nodes and no transitions. Full
support machine automatically means that every node
has outgoing edges for any symbol from the alphabet.
Thus we have to go over all states and assign A outgoing
edges to each, where A is the size of alphabet. I build the
possible graphs recursively: each step of recursion picks
the first node that does not have all the outgoing edges
and adds a new edge to it. But this edge can be going
to any other node, therefore it copies the graph and for
each copy this new edge goes to a different node. Finally
it calls the recursion for each of the new copies.

If the algorithm does just this, we will have a lot of
duplicate machines which will differ by only the names
of nodes. We do not want this to happen, as training
extra machines will take unnecessary computational time
and memory. To avoid this, we can keep track of all
the states that have not been connected to anything else

yet. These states are completely symmetric to each other.
Therefore, at every stage of recursion, we need to connect
the new edge to all the nodes that are not in this set and
to only one node from this set.

finally, we will have to eliminate the disconnected
graphs, add the reset transitions and use Bayesian In-
ference to select the best one and tune it.

One obvious generalization of the structure described
above is to allow more than one layer. We can have as
many layers as our computational power allows. The al-
gorithm generalizes simply: Instead of one beaning num-
ber and one function we now have [ — 1 beaning numbers
and functions, where [ is layer number. First we bean
down the data sequence step-by-step for all the layers,
after that we start by constructing standard e-Machine
for lowest layer, for each state of this machine we con-
struct a new machine on the next layer. For each state of
each machine on this layer we construct a new e-Machine
on the next layer and so on.

B. Checking how well does a Layered e-Machine
predict

Once the Layered e-Machine is trained with one part
of available data, I use the rest of it to test how well the
Layered e-Machine predicts the future prices.

At each moment Layered e-Machines make predictions
on every layer. For each layer there is only one active
machine, and for each machine there is only one active
node. These nodes have outgoing edges with correspond-
ing symbols and probabilities. Each node is bound to
have reset transition with it’s probability. These transi-
tions are artifacts of construction, therefore we need to
ignore them and normalize the other probabilities. Once
normalized for each layer we have corresponding predic-
tions of symbol probabilities. These are different scale
behavior predictions.

To test how well the Layered e-Machine predicts, I look
at the predictions of the top layer. This predictions are
probabilities of daily prices going up or down.

Once the machine is trained and synchronized, I run
a simple trading algorithm using the daily predictions.
The algorithm should not try to maximize mathematical
expectation for daily income. Otherwise it would bet
everything on even 51% chance and would loose all the
resources very soon. Instead the algorithm starts off with
some amount of money and every day it buys or sells
goods according to the predictions. Amount of goods it
buys or sells depends on how sure we are that price will
grow or fall and how much money we currently have. So
daily gain is money * (newPrice — old Price) * (upProb—
downProb).

This is not a good trading algorithm, but it does not
have to be. It is important, that if the predictions are
good, we will end up with increased money, and the bet-
ter the predictions are, the more the gain will be.



V. RESULTS

Once the algorithm is implemented, if we choose to
have only 1 layer, it ends up being a standard e-Machine.
As T already mentioned, I am only interested in compar-
ison of e-Machine and Layered e-Machine. Thus the only
thing that needs to be done is to run the same trader
algorithm for both of them.

I have daily stock market prices for different goods:
Crude Oil; Gold; Copper; Natural Gas; Silver; U.S. Dol-
lar Index. The longest one starts from 1967, the shortest
one starts in 1985. For each of these sequences I am using
roughly 2/3 of the data to train Layered e-Machine and
e-Machine and I use the rest of data to trade.

100 2 H
A" ..\,‘;
N Q¥
.
. P o !
o AW
. S
: i ¥
20 4 ’,: J;.:d\:;t.. .‘?
; " JN'
S

FIG. 4. Total balance VS trading day. Trading silver. Lay-
ered e-Machine parameters: 1 layer; beaning size 50; candi-
date e-Machine sizes [1,2,3]

Because I use 6 different kinds of goods, I can calcu-
late total gain for each of them, then look at the average
and standard deviation. I can do this for different bean-

ing sizes, candidate e-Machine sizes and layer numbers
(including | = 1 corresponding to e-Machine).

Layers | Beaning num | Mach. sizes|avg gain|std
2 50 [1,2,3] 0.9 74
2 50 [1,2] 10.4 |29
2 20 [1,2,3] -30.2 |40
2 20 [1,2] 10.5 |29
1 [1,2,3] -15.9 |32
1 (2,3] -13.6 |33
1 [1,2] -15.9 |32

TABLE I. Parameters of trading machines and their results

In TABLE I one can see Layered e-Machines and e-
Machines with different parameters and different trading
results. Column ”Layers” contains number of layers for
each machine. Column ”Beaning num” is the beaning
number, if there is only one layer, it is undefined. ”Mach.
sizes” is the sizes of candidate e-Machines. ”Avg gain”
is the average gain and ”std” is its standard deviation.

VI. CONCLUSIONS

According to TABLE I, standard deviations are larger
then gain differences between. Thus I can not con-
clude rigorously that any of the Layered e-Machine of e-
Machine performed better then the other. Neither FIG. 4
looks very promising. It is an average example of a win-
ning strategy and one can see that it is very unstable.
And thus it is totally unsuitable for actual trading.

This all said, I still can not disregard the fact that
average gains are on the average better for the Layered
e-Machines compared to the e-Machines. This compari-
son obviously still needs to be carried out for some other
dynamical systems, which hopefully would be more sta-
tionary and give smoother results.

[1] Crutchfield, James P. ”Between order and chaos.” Nature
Physics 8, no. 1 (2012): 17-24.

[2] Strelioff, Christopher C., and James P. Crutchfield.
”Bayesian structural inference for hidden processes.”
Physical Review E 89, no. 4 (2014): 042119.

[3] Yoon, Byung-Jun. ”Hidden Markov models and their ap-
plications in biological sequence analysis.” Current ge-
nomics 10, no. 6 (2009): 402-415.

[4] Narlikar, Leelavati, Nidhi Mehta, Sanjeev Galande, and
Mihir Arjunwadkar. ”One size does not fit all: on how
Markov model order dictates performance of genomic se-
quence analyses.” Nucleic acids research 41, no. 3 (2012):
1416-1424.

[5] Davidchack, Ruslan L., Ying-Cheng Lai, Erik M. Bollt,
and Mukeshwar Dhamala. ”Estimating generating par-
titions of chaotic systems by unstable periodic orbits.”
Physical Review E 61, no. 2 (2000): 1353.

[6] C. Stuart, Charles Edward Andrew Finney, and Eugene
R. Tracy. ” A review of symbolic analysis of experimental

data.” Review of Scientific instruments 74, no. 2 (2003):

915-930.

Kennel, Matthew B., and Michael Buhl. ”Estimating

good discrete partitions from observed data: Symbolic

false nearest neighbors.” Physical Review Letters 91, no.

8 (2003): 084102.

Strelioff, Christopher C., and James P. Crutchfield. ”Op-

timal instruments and models for noisy chaos.” Chaos:

An Interdisciplinary Journal of Nonlinear Science 17, no.

4 (2007): 043127.

[9] Rao, Rajesh PN, Nisha Yadav, Mayank N. Vahia,
Hrishikesh Joglekar, R. Adhikari, and Iravatham Ma-
hadevan. ” A Markov model of the Indus script.” Pro-
ceedings of the National Academy of Sciences 106, no. 33
(2009): 13685-13690.

[10] Lee, Rob, Philip Jonathan, and Pauline Ziman. ” Pictish
symbols revealed as a written language through appli-
cation of Shannon entropy.” In Proceedings of the Royal
Society of London A: Mathematical, Physical and En-

7

8



(11]

(12]

(13]

gineering Sciences, p. rspa20100041. The Royal Society,
2010.

Kelly, David, Mark Dillingham, Andrew Hudson, and
Karoline Wiesner. ”A new method for inferring hidden
Markov models from noisy time sequences.” PloS one 7,
no. 1 (2012): e29703.

Li, Chun-Biu, Haw Yang, and Tamiki Komatsuzaki.
”Multiscale complex network of protein conformational
fluctuations in single-molecule time series.” Proceedings
of the National Academy of Sciences 105, no. 2 (2008):
536-541.

beim Graben, Peter, J. Douglas Saddy, Matthias Schle-
sewsky, and Jrgen Kurths. ”Symbolic dynamics of event-
related brain potentials.” Physical Review E 62, no. 4
(2000): 5518.

(14]

(15]

(16]

Haslinger, Robert, Kristina Lisa Klinkner, and Cosma
Rohilla Shalizi. ”The computational structure of spike
trains.” Neural computation 22, no. 1 (2010): 121-157
Varn, Dowman P.; Geoffrey S. Canright, and James P.
Crutchfield. "Inferring planar disorder in close-packed
structures via-machine spectral reconstruction theory:
structure and intrinsic computation in zinc sulfide.” Acta
Crystallographica Section B: Structural Science 63, no. 2
(2007): 169-182.

Varn, D. P.; G. S. Canright, and J. P. Crutchfield. ”-
Machine spectral reconstruction theory: a direct method
for inferring planar disorder and structure from X-ray
diffraction studies.” Acta Crystallographica Section A:
Foundations of Crystallography 69, no. 2 (2013): 197-
206.



