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Abstract 

A Chua circuit, known to exhibit chaotic behavior, 

has been constructed and studied. The circuit was built 

with a potentiometer as a control resistor, and chaotic 

dynamics such as limit cycles and attractors were 

measured and compared to a numerical simulation. The 

circuit showed intermittent chaos from 1307Ω to 1777Ω, 

and were in agreement with the numerical simulation 

within an 11.81% to 18.81% relative error range. Two 

Chua Circuits were then successfully synchronized using 

the bidirectional method. 

 

1. Introduction 

This work was motivated by the question “Can you 

synchronize chaos?” which was made by me during 

PHY256A. The physical implementation of a chaotic 

system was motivated by section 9.5 “Using Chaos to 

Send Secret Messages” of the book Nonlinear Dynamics 

and Chaos by Steven H. Strogatz. In this particular 

section, a brief discussion on how to construct a chaotic 

mask using an electronic implementation of the Lorentz 

equations is held. A Chua Circuit was then preferred 

over the Lorentz both for simplicity and historical 

reasons.  

When Edward Lorentz provided his idealized model 

of the atmosphere [1], some scientists questions the 

physical nature of his result. Their argument was that no 

real experimental confirmation could ever be made 

because his model was very crude and simplified; that 

his model could only be exhibited by abstract 

mathematical models but had no connection to reality.  

 In order to settle the ongoing dispute, Takashi 

Matsumoto’s research group decided to build an 

electrical circuit that would mimic the equations [2].  

 

 

However, they had trouble implementing the 

multiplications that appear on the equations of motion, 

so their circuit ended up being very complex. 

After almost three years of work, the circuit was 

finally completed in October 1983. Unfortunately, the 

premier was a spectacular disaster due to the failure of 

one of the integrated circuits [3].  It was then when Leon 

Chua, a visiting professor at the time, wondered if one 

could construct a circuit that would not be governed by 

the Lorentz equations, but would still give rise to chaotic 

behavior. 

The Chua circuit was born after he figured out 

exactly how to remove all the unnecessary components 

of the Lorentz circuit while still preserving the chaos, 

and Chua himself was among the first persons who 

showed that chaos can be easily constructed and 

observed. 

 The first goal of this work was to build a Chua 

circuit with a variable resistor as a bifurcation parameter. 

Secondly, a numerical simulation was used to compare 

the experimental measurements. The measurements were 

compared both visually and in terms of the variable 

resistor.  Lastly, two Chua circuits were synchronized 

using the bidirectional synchronization method discussed 

on the already mentioned Strogatz book.  

Section 2 on this work introduces the Chua circuit. 

In section 3 a fixed point analysis is performed on the 

equations of motion of the Chua circuit. Section 4 details 

the experimental realization of the Chua circuit. Section 

5 goes through the numerical simulation methodology 

and parameters. In section 6 all of the results are 

presented and a discussion of them is done on section 7. 

Finally, the conclusions and a brief proposal of future 

work are discussed in section 8. 



 

2. Background 

Back when he was figuring out how to create his 

circuit, Leon Chua had a lot of decisions to make. He 

intuitively knew that his circuit didn’t have to be as 

complicated as the Lorentz prototype to get chaos. 

However, he also knew going into his search that he 

needed to reach a certain minimal complexity (Poincaré-

Bendixson theorem) of at least three degrees of freedom 

to not lose the behavior [4].  

That was the first question that Leon Chua had to 

ask himself: what is a degree of freedom on an electrical 

circuit? If the system contained only resistive 

components all currents and voltages could be computed 

directly, without any additional knowledge. If the 

information about this current is provided, it can be 

treated just like an ordinary current source and the 

resulting resistive equations can be solved. Therefore, 

such system would have zero degrees of freedom.  

The answer is that a degree of freedom is any 

component in which the relation between voltage and 

current depends on previous history (i.e. a differential 

relation). This is the case because the number of degrees 

of freedom describes how many scalar quantities (at each 

moment in time) are needed to fully classify the state of 

the circuit, meaning that every voltage and current can 

be computed from such information. This is achievable 

by energy-carrying components, such as inductors or 

capacitors. And it also meant that by default Chua’s final 

circuit would be autonomous, which means dependent 

on time. So Chua decided to use one of the former and 

two of the later and moved on. 

The second problem that Chua encountered is that a 

linear system cannot exhibit chaotic behavior [5]. He 

knew that he needed a non-linear component because a 

linear system is independent of scale and therefore 

whatever happens on a small scale happens at a larger 

scale; there is no element of surprise on a linear system. 

Chua opted for a purely resistive non-linear component, 

but that didn’t reduce his list of possibilities a great 

much. He explored a lot of possibilities with elements 

such as transistors, varistors, diodes and many more to 

see what worked best. At the end he decided to use 

operational amplifiers, and the first version of the Chua 

Diode was born. 

 

        

Figure 1- Schematic representa-      Figure 2- Operational Amplifier 

ion of an ideal operational             characteristics between voltage 

amplifier                                         difference and amplified voltage 

 

        

Figure 3- Schematic representa-      Figure 4- Ideal voltage/current 

ion of a Chua diode                         relationship for a Chua diode 

                                                     

“The rather surprising fact first proven by Chua, 

known as the Global Unfolding Theorem, is that a circuit 

satisfying these three criteria (autonomous, three energy 

storing components and the only nonlinear devices are 

operational amplifiers) either contains more operational 

amplifiers than minimally needed for chaos or is 

conjugate to family of circuits of the Chua-Kennedy. 

Hence the Global Unfolding Theorem provides 

mathematical rigor to the statement that the Chua circuit 

is "the simplest chaotic circuit" and motivate its use as a 

model system for chaotic systems.” [3] 

 

 

Figure 5- Chua circuit 

 

 



 

3. Dynamical System 

 

The three equations of motion for the circuit are given 

by: 
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Where     ) is the Chua diode. In these 

equations the state variables    and    are the voltages 

across the capacitors,    and   ,    is the current flowing 

through the inductor  , which has an internal resistance 
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There are three fixed points to these equations, which 

are: 

    [          ] 

      [
        )     )

       )  

 
        )   )

       )  

 
        )   )

       )  

] 

 

Where    and    are the slopes of the Chua 

diode (see figure 4). In these equations the state variables 

v1 and v2 are the voltages across the capacitors, C1 and 

C2, iL is the current flowing through the inductor L, 

which has an internal resistance R0. 

The fixed points    and    are only feasible if 

     and       respectively, leading to the 

following condition: 
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Rewriting this condition gives a lower and upper 

bound on the variable resistor R:  
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Performing a stability analysis [6] concludes that 

   is always an unstable equilibrium point, while there is 

a region where the real part of all three eigenvalues is 

negative for    and   . The crossing of the imaginary 

axis is what determines the stable region for the 

parameter R. 

There is also a resistance value at which a Hopf 

bifurcation appears [7], at which point the equilibrium 

point loses its stability and a stable limit cycle appears. 

 

4. Experimental Setup  

 

 

4.1 Experimental Realization 

Figure 6 shows the schematic representation of the 

electric circuit assembled for this work.  

 

Figure 6- Circuit diagram of Chua circuit used in experiments 

 

Where        [ ],        [ ],    

    [  ],       [  ],       [  ],        [  ], 

      [  ],        [  ],      [  ],    

   [ ] and   is a potentiometer. 

 

 



 

4.2 The Chua Diode 

The diode’s characteristic behavior is derived by 

studying each section containing an operational 

amplifier independently. In figure 3 two of those 

sections can be seen connected in parallel. These 

sections are known as negative impedance converters, 

and they effectively behave as a resistor that creates 

energy instead of dissipating it, as long as the voltage is 

within the linear range of the operational amplifier [3].  

Once the voltage is beyond this range, the 

differential resistance becomes positive, as in an 

ordinary resistor, meaning that the total component 

behaves like a piecewise linear device. A circuit with 

only one of these devices is not enough to get chaos, as 

such a circuit will reach a stable equilibrium due to 

energy dissipation.  

However, if two of these devices are connected in 

parallel, the total current created will be the sum of both 

devices and the resulting voltage vs. current 

characteristics will have five linear sections, with the 

possibility for the three inner sections to all have 

negative differential resistance [8]. This is exactly what 

was obtained in figure 7. 

 

Figure 7- Numerically obtained voltage/current relationship for the Chua 

diode used on this work. 

 

 

 

 

4.3 List of Materials 

Table 1 contains a list of materials used to realize the 

circuit. 

Device Stock Code Qty Description 

 

Capacitor 

 

Mapln Sc Series 

 

2 

Metallized 

Polyester Film 

(MKT) Capacitors 

 

Inductor 

 

PCH45X186KLT 

 

1 

Axial Lead Power 

Choke 

 

Resistor 

 

TOPCOFRLD008 

 

6 

Metal Film full 

range resistor 

Potentiometer B01LYHMKNN 1 Logarithmic Dual 

Rotary 

Potentiometer 

Operational 

Amplifier 

TI6PCSUA741CP 2 General Purpose 

Operational 

Amplifier 

Table 1- List of materials. All elements are Rohs compliant 

 

Resistors- Metal firm resistors with 1% tolerance 

were used, as they have low noise and weak 

nonlinearity. 

Capacitors- To achieve a sharp image, 

metallized polyester capacitors were selected. Their 

leakage resistance was measured and deemed 

unimportant.    

Inductor- The general recommendation in the 

literature is to use a gyrator circuit in favor of a physical 

coil. Of the criticism raised in the literature against the 

inductor, the most serious one is the claim of non-

linearity due to hysteresis. The inductor also needs to 

have an internal resistance lower than 30[Ω]. These 

specifications make it hard to find a suitable physical 

inductor and thus the gyrator is preferred. However, a 

series of inductor that comfortably met the criteria was 

found and thus an actual inductor was used on this 

experimental setup.  
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Figure 8 shows the physical realization of the Chua 

circuit.  

 

Figure 8- Chua circuit 

 

The greatest disadvantage of the setup is that is not 

possible to choose initial conditions. The setup is 

initialized when the voltage supply of the operational 

amplifiers is turned on. Although the initial conditions 

are random and unknown, polarity ensures that the 

voltage across capacitor C1 is negative. Therefore the 

initial conditions are always negative.  

 

4.4 Synchronization- Bidirectional Chua Circuit 

There are many ways to couple a system for 

synchronization, the two most popular are bidirectional, 

and Master/Slave (unidirectional). This work briefly 

explored the bidirectional approach. 

 

Figure 9- Bidirectional Chua circuit. All of the component values were 

replicated. A 1[kΩ] resistor was used as synchronization resistor.  

 

 

 

 

 

 
 

Figure 10- Experimental realization of the bidirectional Chua circuit. 

 

 

5. Numerical Setup  

 

In order to validate the experimental results, a 

numerical simulation was elaborated on Sage Math.  

While a dimensionless model is what is most 

commonly used and referred to in academic literature, 

this work used a realistic model in which all of the 

component values were used. The objective of this was 

to preserve the resistor value at which every solution was 

taken in order to compare it to the experimental obtained 

one.  

A finite difference method, with a timestep of 

0.0000001 seconds. The number of iterations used was 

100000, and the first 10% of them were discarded as 

transient behavior was not important on this work.  

A swipe of integer values of R was done going down 

from 2500[Ω], with five different aleatory and negative 

initial conditions for each value.  

 

6. Results  

 

6.1 Numerical Predictions vs. Experimental Results 

If the resistance is chosen to be a very high value, 

any oscillations will quickly be dissipated, and the 

system will after a transient simply be in an equilibrium 

state with a steady current flowing through the resistor 

and constant voltages.  



 

 

This means that the circuit effectively behaves as if the 

left part was replaced by a resistor. It also means that it 

is easier to analyze the behavior of the circuit by 

decreasing the resistance, rather than increasing it, which 

is what was done on this work.  

As the resistance is decreased, the equilibrium 

point must sooner or later be instable, as the dissipation 

is no longer enough to quell any disturbances that 

appear. Instead, such a perturbation causes a self-

oscillatory cycle where the left part of the circuit is 

charged and then discharged.  

This is the Hopf bifurcation, which was first 

reached at 2015 [Ω] on the numerical prediction and 

1777 [Ω] on the experiment.  

     

Figure 11- Numerical prediction             Figure 12- Experimental result for 
for the original limit cycle.                       the original limit cycle.  

R=      [ ]                                            R=      [ ] 

 

As the resistance is further decreased, this limit 

cycle also becomes unstable, since a small deviation in 

entry will cause the trajectory to “overshoot” the correct 

exit point, causing the next cycle that follows to 

undershoot instead [3]. Hence a limit cycle of twice the 

period is formed by this cycle of over- and 

undershooting of the original limit cycle (since the 

system now must transverse two loops before returning 

to the initial configuration). The first period doubling for 

the single scroll was observed at 2001 [Ω] on the 

numerical prediction and 1714 [Ω] on the experiment.  

 

 

 

 

 

 

     

Figure 13- Numerical prediction             Figure 14- Experimental result for 

for the first period doubling.                    the first period doubling.  

R=      [ ]                                            R=      [ ] 

 

Further decrease of the resistance causes a 

further doubling in period time by the same mechanism. 

The second period doubling for the single scroll was 

observed at 1998 [Ω] on the numerical prediction and 

1701 [Ω] on the experiment.  

     

Figure 15-  Numerical prediction            Figure 16- Experimental result for 

for the second period doubling.                the second period doubling.  

R=      [ ]                                            R=      [ ] 

 

Lowering the resistance gives rise to period three 

and period four limit cycles; both of them are called 

tangent bifurcations. These are arguably the most 

interesting, since they are a strong indication that the 

experimental setup is capable of generating chaos [6]. 

Also notable is the fact that there is only a 1 [Ω] 

separation between both limit cycles on the numerical 

prediction (1993 [Ω] vs 1992 [Ω]) , and 8 [Ω] on the 

experimental prediction (1677 [Ω] vs 1669 [Ω]). 

 

 

 



 

      

Figure 17-  Numerical prediction            Figure 18-  Experimental result for 

for the “triple loop” single scroll              the  “triple loop”  single scroll   with                

with periodic window.                              periodic window  

R=      [ ]                                            R=      [ ] 
 

      

Figure 19- Numerical prediction             Figure 20- Experimental result for 

for the “quadruple loop” single                the  “quadruple loop”  single scroll     

scroll with periodic window.                    with periodic window  

R=      [ ]                                            R=      [ ] 

 

Chaos appears as these transitions become more 

and more frequent, making the oscillation essentially 

aperiodic. The “birth” of the single scroll chaotic 

attractor was observed at 1974 [Ω] on the numerical 

prediction and 1650 [Ω] on the experiment. 

      

Figure 21- Numerical prediction              Figure 22- Experimental result for 

for a single chaotic scroll.                         a single chaotic scroll   

R=      [ ]                                           R=      [ ] 

 

Apart from weaker dissipation, a reduction of the 

resistance also moves the outer equilibrium point closer 

to the center. 

 

 

 

With enough reduction, when the trajectory enters the 

inner region, the real eigenvector is not able to push it 

back immediately, but instead the curve has the chance 

of getting over to the other side of the origin, thereby 

connecting the two possible single scroll solutions into a 

double scroll [3]. 

It is clear that the lower the resistance, the more 

the system behave as one large attractor, with turning to 

the other side being as likely as staying. The first 

appearance of the double scroll attractor was observed at 

1961 [Ω] on the numerical prediction and 1627 [Ω] on 

the experiment. 

       

Figure 23- Numerical prediction             Figure 24- Experimental result for 

for a double scroll.                                    a double scroll   

R=      [ ]                                            R=      [ ] 

 

As the resistance keeps being lowered, so does 

the nature of the double scroll. A “quadruple loop” 

double scroll with periodic window was observed at  

1851 [Ω] on the numerical prediction and 1607 [Ω] on 

the experiment. 

 

       

Figure 25- Numerical prediction             Figure 26- Experimental result for 

for the “quadruple loop” double               the  “quadruple loop” double scroll     
scroll with periodic window.                    with periodic window  

R=      [ ]                                            R=      [ ] 

 

 



 

As the fixed points keep moving towards each 

other, a point is reached where the center starts 

becoming too dissipative. This changes the attractor 

behavior, as the orbit now starts to go from one foxed 

point to the other one through the outwards, instead of 

the center.  

The homoclinic double scroll was first observed 

at 1783 [Ω] on the numerical prediction and 1532 [Ω] on 

the experiment. 

 

      

Figure 27- Numerical prediction             Figure 28- Experimental result for 

for an homoclinic double scroll.               an homoclinic double scroll   

R=      [ ]                                            R=      [ ] 

 

The homoclinic double scroll also comes with 

limit cycles. Figures 29 through 33 explore the ones 

found on this work. 

 

       

Figure 29- Numerical prediction               Figure 30- Experimental result for 

for the “single loop” double                       the   “single  loop ”   double  scroll     
scroll with periodic window.                      with periodic window  

R=      [ ]                                              R=      [ ] 

 

 

 

 

 

      

Figure 31- Numerical prediction             Figure 32- Experimental result for 

for another double  scroll with                 another  double  scroll with periodic 
with periodic window.                              window  

R=      [ ]                                           R=      [ ] 
                       

 

When the resistance becomes low enough, the 

outer equilibrium points will come closer and closer to 

the inner region. For a trajectory rather far away from 

the three points, they will then effectively behave as a 

single repulsive point, pushing out the trajectory into the 

outmost region. This area is strongly dissipative and 

will, therefore, send the trajectory back, giving rise to a 

large limit cycle in the outmost region [3].  

As the theoretical behaviour for the Chua diode 

does not agree with experimental measurements due to 

current limitations (nor are the operational amplifiers 

built to work in this region), no greater interest was 

given to this region.  

 

       

Figure 33- Numerical prediction             Figure 34- Experimental result for 

for the outmost limit cycle.                       the outmost limit cycle. 
 

 

 

 

 



 

 

6.2 Synchronization of two Chua Circuits via 

Bidirectional Method 

Figures 35 and 36 show how the signals look when 

the circuits are not synchronized and how they look 

when it is turned on. 

 

 
Figure 35- Unsynchronized Chua Circuits. 

 

The upper images on both figures show both of 

the Chua circuits. The lower left image shows both X 

coordinates plotted against each other, and the lower 

right image shows both X coordinates plotted against 

time.  

 

 
Figure 36- Synchronized Chua Circuits. 

 

7. Discussion 

The circuit showed intermittent chaos from 1307Ω 

to 1777Ω, and were in agreement with the numerical 

simulation within an 11.81% to 18.81% relative error 

range. 

 

 

 

An explanation for this margin of error is the 

capacitors. The circuit used capacitors in the order of 

magnitude of 10 and 100 [nF]. In this range, commercial 

instruments available at the time of this work had an 

inaccuracy of at least 10% which added together make 

the circuit too imprecise to reach a margin of error lesser 

than 10%.  

In the case of bidirectional synchronization the 

circuits are diffusively coupled using the first state. 

When the circuits were not synchronized both attractors 

looks similar, but their time signals were very different. 

When they were synchronized a 45° angle on the plot of 

X vs X plot. The signals also perfectly match each other 

on the plot of X vs time.  

Several resistor values were used to attempt 

synchronization. When the resistor was lowered the 

coupling strength increased, lowering the 

synchronization error. The opposite happened for 

increasing resistor values. If the resistor value is high 

enough, the coupling is too weak to synchronize the 

circuits and they operate as free systems. 

 

8. Conclusion 

 

The Chua circuit is a complex system capable of 

generating bifurcation and chaos phenomena. The 

nonlinearity of the circuit is given by a piece-wise linear 

characteristic, which consists of three linear parts. The 

objective of this work was to analyze its dynamic 

behavior with an experimental realization of the circuit. 

To compare the obtained experimental results a 

numerical setup was also designed. Both the 

experimental and numerical methods were compared 

visually and in terms of the bifurcation parameter R.  

As a last part of this project, two Chua circuits were 

synchronized using the bidirectional synchronization 

method. This last part was successful, as the results 

coincide with what Strogatz on chapter 9 of this book.  

 

 



 

 

Chaotic synchronization has been receiving 

increasing in literature since the publication of [9]. 

Examples of applications of chaotic synchronization can 

be found in [10]. The bursting phenomenon, which 

occurs if the coupling strength crosses a certain 

threshold value, should be investigated further. A 

possible technique that can be used is the examination of 

transverse Lyapunov exponents of the synchronization 

manifold. This is explored on [11].  

Previous work [12] has suggested the possibility 

of extending the synchronization concept to that of a 

metaphor for some neural processes. It has been 

suggested that one should view the brain response as an 

attractor. It has also been further theorized [13] that the 

process of synchronization can be viewed as a response 

system that “knows” what state (attractor) to go when 

driven (stimulated) by a particular signal. Both authors 

coincide in that this dynamical view could supplant the 

more “fixed-point” view of neural nets.  

Synchronization of chaos has also found 

application in many areas of physics, biology, and 

engineering. This is why it is important to continue 

addressing its issues and exploring the subject. 
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