Robust Periodic Solution in One-dimensional Multi-state Edge Cellular Automata PHY 256

Xiaochen Liu

Mathematics Department

June 6, 2017

Background: One-Dimensional Cellular Automata

- Lattice: \mathbb{Z}
- Site: $x \in \mathbb{Z}$
- Time: $t \in \mathbb{N}$
- Local state: $\xi_t(x) \in \mathbb{Z}_n := \{0, 1, \cdots, n-1\}$
- Global configuration: $\xi_t = (\cdots, \xi_t(-1), \xi_t(0), \xi_t(1), \cdots) \in \mathbb{Z}_n^{\mathbb{Z}}$

• Local dynamic:

$$\xi_{t+1}(x) = f(\xi_t(x-1), \xi_t(x))$$
(1)

where

$$f: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \text{ with } f(0, a) = a, \quad \forall a \in \mathbb{Z}_n$$
 (2)

• Initial configuration: $\xi_0(x) = 0$ for all x < 0, i.e., semi-infinite.

Local look up table:

A 3-state Example: Rule 102222

Global evolution:

- For a fixed *n*, there are n^{n^2-n} rules.
- $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$: Probability space.
- $\Omega_n = \text{set of } n^{n^2-n} \text{ rules. } \mathcal{F}_n = \sigma \text{-algebra. } \mathbb{P}(\{f\}) = 1/n^{n^2-n}.$
- $Y_n \subset \Omega_n$ contains rules with certain property.

• Question: What is $\lim_{n} \mathbb{P}(Y_n)$? Or what is the bound of $\lim_{n} \mathbb{P}(Y_n)$?

- Bounded growth
- Doubly periodic configuration
 - Existence of periodic solution
 - Existence of robust periodic solution

Def.: A rule *f* has bounded growth if, for all finite initial configuration A_0 , there is a $K = K(A_0)$ such that $\xi_t^{A_0}(x) = 0$, for all *t* and x > K. **Example:**

Figure: Rule 101220 from six finite initial configurations

Question: What is $\lim_{n} \mathbb{P}(Y_n)$?

Proposition: With uniform distribution among n^{n^2-n} rules, the probability that a rule has growth velocity 1 is $1 - \frac{1}{n}$. So, the probability that a rule has bounded growth approaches to 0.

Proof

Fix an *n*. Let $g : \mathbb{Z}_n \to \mathbb{Z}_n$ be defined as g(a) = b if $a\underline{0} \mapsto b$. Clearly, noting that $g(0) \equiv 0$, there are n^{n-1} such functions. Also note that a rule has growth velocity < 1 if and only if

for any
$$a \in \mathbb{Z}_n, g^k(a) = 0$$
 for some $k > 0$, (3)

where this k may depend on a. Note that there is a 1-1 correspondence between g's satisfying (3) and labelled trees with vertices [n-1]. See the following figure for a proof by example. There are n^{n-2} such trees by Cayley's formula and thus the result follows.

Figure: The labelled tree corresponding to the map $1 \mapsto 0, 2 \mapsto 1, 3 \mapsto 0, 4 \mapsto 3$ and $5 \mapsto 1$.

- Handle: Finite configuration H with length h;
- Link: Finite configuration *L* with length *l*.
- Append *m* (can be ∞) *Ls* to *H*: $H + L + \cdots + L = HL^m$.

• **Def.:** Fix a rule f and run the CA starting with HL^m . If $\xi_{\pi}^{HL^m}|_{[0,h+ml]} = HL^m$, then H + L is called a handle-link pair with period π .

• Intuition: HL^m is doubly periodic with temporal period π and spatial period *l*.

A PS Example

Rule 122012. $\xi_0 = H + L + L + R$, where H = 1, L = 0.11211021222 and R is a random finite configuration. $\pi = 4$.

Figure: A PS of rule 122012

Robust Periodic Solution

• **Def.:** (expansion velocity) Fix a handle-link pair H + L. Let A_0 be any configuration in the form of H + L + R, where R is any random semi-infinite configuration. Let

$$s_t = \max\{x | \xi_t^{\mathcal{A}_0}(y) = \xi_t^{\mathcal{HL}^{\infty}}(y), \forall y < x\}.$$

Then the expansion velocity in environment A_0 is

$$v(A_0) = \liminf_{t \to \infty} \frac{s_t}{t}$$

and the expansion velocity of H + L is

$$v(H+L)=\inf v(A_0).$$

• **Def.:** A handle link pair H + L is robust if v(H + L) > 0.

• Intuition: *HL^m* is doubly periodic and the spatial periodic part *L* grows into any environment with positive velocity.

Xiaochen Liu

A RPS Example

Rule 102222. $\xi_0 = H + L + L + R$, where H = 1202, L = 221102 and R is a random finite configuration. $\pi = 3$.

Figure: A RPS of rule 102222

- Fix a temporal period π .
- Directed graph on vertices $\{x_0x_1\cdots x_{\pi-1}|x_j\in\mathbb{Z}_n\}$.
- Construct an arc from $x_0x_1 \cdots x_{\pi-1}$ to $y_0y_1 \cdots y_{\pi-1}$ if and only if $f(x_k \mod \pi, y_k \mod \pi) \mapsto y_{k+1} \mod \pi$ for all $k \in \mathbb{Z}_{\pi}$.
- Remove the labels that are not reachable from the label $00 \cdots 0$.

• Intuition: Provides with the info.: to extend the periodicity (with period π) from site k to k + 1, what should we do.

Induced Graph: Example

Figure: The induced graph ($\pi = 3$) of rule 102222 – the one a RPS was found. Labels having degree 0 are not shown.

Theorem: [Gravner] (rephrasing) An edge rule f has a PS of period π if and only if there is a cycle on the induced graph of f of period π; it has a RPS of period π if and only if there is a faithful cycle on the induced graph of f of period π.

• **Def.:** A cycle is *faithful* if each of its nodes has outer degree 1.

- Induced graphs are on vertices \mathbb{Z}_n .
- There is an arc from k to j if and only if f(k, j) = j, which holds with probability 1/n whenever $k \neq 0$.
- Reduces (almostly) to an Erdős-Rényi graph $G_{n,1/n}$: an random n-vertex directed graph such that each arc is formed with probability 1/n.
- Question: What is the probability that a $G_{n,1/n}$ has a cycle? A faithful cycle?

• **Proposition:** With uniform distribution among n^{n^2-n} rules, the probability that an *n*-state range-1 edge CA has at least a $\pi = 1$ PS approaches to 1 as *n* approaches to infinity. Consequently, the probability that an *n*-state range-1 edge cellular automata has at least a PS approaches to 1.

Proposition: With uniform distribution among n^{n²-n} rules, the probability that an n-state range-1 edge cellular automata has at least a π = 1 RPS approaches to 1/e as n approaches to infinity.

How about the general case?

Janko Gravner, David Griffeath. *Robust periodic solutions and evolution from seeds in one-dimensional edge cellular automata*. Theoretical Computer Science. Volume 466, 28 December 2012, Pages 64-86.