Robust Periodic Solution in One-dimensional Multi-state Edge Cellular Automata PHY 256

Xiaochen Liu

Mathematics Department

June 6, 2017

Background: One-Dimensional Cellular Automata

- Lattice: \mathbb{Z}
- Site: $x \in \mathbb{Z}$
- Time: $t \in \mathbb{N}$
- Local state: $\xi_{t}(x) \in \mathbb{Z}_{n}:=\{0,1, \cdots, n-1\}$
- Global configuration: $\xi_{t}=\left(\cdots, \xi_{t}(-1), \xi_{t}(0), \xi_{t}(1), \cdots\right) \in \mathbb{Z}_{n}^{\mathbb{Z}}$

The System: Edge Cellular Automata

The System: Edge Cellular Automata

- Local dynamic:

$$
\begin{equation*}
\xi_{t+1}(x)=f\left(\xi_{t}(x-1), \xi_{t}(x)\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n} \text { with } f(0, a)=a, \quad \forall a \in \mathbb{Z}_{n} \tag{2}
\end{equation*}
$$

- Initial configuration: $\xi_{0}(x)=0$ for all $x<0$, i.e., semi-infinite.

A 3-state Example: Rule 102222

Local look up table:

A 3-state Example: Rule 102222

Global evolution:

Main Question

- For a fixed n, there are $n^{n^{2}-n}$ rules.
- $\left(\Omega_{n}, \mathcal{F}_{n}, \mathbb{P}_{n}\right)$: Probability space.
- $\Omega_{n}=$ set of $n^{n^{2}-n}$ rules. $\mathcal{F}_{n}=\sigma$-algebra. $\mathbb{P}(\{f\})=1 / n^{n^{2}-n}$.
- $Y_{n} \subset \Omega_{n}$ contains rules with certain property.
- Question: What is $\lim _{n} \mathbb{P}\left(Y_{n}\right)$? Or what is the bound of $\lim _{n} \mathbb{P}\left(Y_{n}\right)$?

Main Properties

- Bounded growth
- Doubly periodic configuration
- Existence of periodic solution
- Existence of robust periodic solution

Bounded Growth

Def.: A rule f has bounded growth if, for all finite initial configuration A_{0}, there is a $K=K\left(A_{0}\right)$ such that $\xi_{t}^{A_{0}}(x)=0$, for all t and $x>K$. Example:

Figure: Rule 101220 from six finite initial configurations

Result of Bounded Growth

Question: What is $\lim _{n} \mathbb{P}\left(Y_{n}\right)$?

Proposition: With uniform distribution among $n^{n^{2}-n}$ rules, the probability that a rule has growth velocity 1 is $1-\frac{1}{n}$. So, the probability that a rule has bounded growth approaches to 0 .

Proof

Fix an n. Let $g: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be defined as $g(a)=b$ if $a \underline{0} \mapsto b$. Clearly, noting that $g(0) \equiv 0$, there are n^{n-1} such functions. Also note that a rule has growth velocity <1 if and only if

$$
\begin{equation*}
\text { for any } a \in \mathbb{Z}_{n}, g^{k}(a)=0 \text { for some } k>0 \tag{3}
\end{equation*}
$$

where this k may depend on a. Note that there is a $1-1$ correspondence between g 's satisfying (3) and labelled trees with vertices $[n-1]$. See the following figure for a proof by example. There are n^{n-2} such trees by Cayley's formula and thus the result follows.

Figure: The labelled tree corresponding to the map $1 \mapsto 0,2 \mapsto 1,3 \mapsto 0,4 \mapsto 3$ and $5 \mapsto 1$.

Periodic Solution

- Handle: Finite configuration H with length h;
- Link: Finite configuration L with length I.
- Append m (can be ∞) L s to $H: H+L+\cdots+L=H L^{m}$.
- Def.: Fix a rule f and run the CA starting with $H L^{m}$. If $\left.\xi_{\pi}^{H L^{m}}\right|_{[0, h+m /]}=H L^{m}$, then $H+L$ is called a handle-link pair with period π.
- Intuition: ${H L^{m}}^{m}$ is doubly periodic with temporal period π and spatial period $/$.

A PS Example

Rule 122012.
$\xi_{0}=H+L+L+L+R$, where $H=1, L=011211021222$ and R is a random finite configuration. $\pi=4$.

Figure: A PS of rule 122012

Robust Periodic Solution

- Def.: (expansion velocity) Fix a handle-link pair $H+L$. Let A_{0} be any configuration in the form of $H+L+R$, where R is any random semi-infinite configuration. Let

$$
s_{t}=\max \left\{x \mid \xi_{t}^{A_{0}}(y)=\xi_{t}^{H L^{\infty}}(y), \forall y<x\right\}
$$

Then the expansion velocity in environment A_{0} is

$$
v\left(A_{0}\right)=\liminf _{t \rightarrow \infty} \frac{s_{t}}{t}
$$

and the expansion velocity of $H+L$ is

$$
v(H+L)=\inf v\left(A_{0}\right)
$$

- Def.: A handle link pair $H+L$ is robust if $v(H+L)>0$.
- Intuition: $H L^{m}$ is doubly periodic and the spatial periodic part L grows into any environment with positive velocity.

A RPS Example

Rule 102222.
$\xi_{0}=H+L+L+L+R$, where $H=1202, L=221102$ and R is a random finite configuration. $\pi=3$.

Figure: A RPS of rule 102222

Main Tool: Induced Graph

- Fix a temporal period π.
- Directed graph on vertices $\left\{x_{0} x_{1} \cdots x_{\pi-1} \mid x_{j} \in \mathbb{Z}_{n}\right\}$.
- Construct an arc from $x_{0} x_{1} \cdots x_{\pi-1}$ to $y_{0} y_{1} \cdots y_{\pi-1}$ if and only if $f\left(x_{k} \bmod \pi, y_{k} \bmod \pi\right) \mapsto y_{k+1} \bmod \pi$ for all $k \in \mathbb{Z}_{\pi}$.
- Remove the labels that are not reachable from the label $00 \cdots 0$.
- Intuition: Provides with the info.: to extend the periodicity (with period π) from site k to $k+1$, what should we do.

Induced Graph: Example

Figure: The induced graph $(\pi=3)$ of rule 102222 - the one a RPS was found. Labels having degree 0 are not shown.

Between RPS and Induced Graph

- Theorem: [Gravner] (rephrasing) An edge rule f has a PS of period π if and only if there is a cycle on the induced graph of f of period π; it has a RPS of period π if and only if there is a faithful cycle on the induced graph of f of period π.
- Def.: A cycle is faithful if each of its nodes has outer degree 1 .

$\pi=1$ Case

- Induced graphs are on vertices \mathbb{Z}_{n}.
- There is an arc from k to j if and only if $f(k, j)=j$, which holds with probability $1 / n$ whenever $k \neq 0$.
- Reduces (almostly) to an Erdős-Rényi graph $G_{n, 1 / n}$: an random n-vertex directed graph such that each arc is formed with probability $1 / n$.
- Question: What is the probability that a $G_{n, 1 / n}$ has a cycle? A faithful cycle?

Result for $\pi=1$ Case

- Proposition: With uniform distribution among $n^{n^{2}-n}$ rules, the probability that an n-state range- 1 edge CA has at least a $\pi=1$ PS approaches to 1 as n approaches to infinity. Consequently, the probability that an n-state range- 1 edge cellular automata has at least a PS approaches to 1 .
- Proposition: With uniform distribution among $n^{n^{2}-n}$ rules, the probability that an n-state range- 1 edge cellular automata has at least a $\pi=1$ RPS approaches to $1 / e$ as n approaches to infinity.

Not Solvable Yet

How about the general case?

Reference

Janko Gravner, David Griffeath. Robust periodic solutions and evolution from seeds in one-dimensional edge cellular automata. Theoretical Computer Science. Volume 466, 28 December 2012, Pages 64-86.

