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Background

Integer programming is a vast subfield of optimization in which some or all of the optimization parameters

must take on values from a discrete set. At first glance, this means that we can optimize problems such as

job assignments in which it is not possible to hire half of an employee, although such direct applications are

more far reaching than that. More broadly, we can reduce very difficult theoretical problems from number

theory and combinatorial optimization to integer programs, so any advance in integer programming will also

provide advances in these other fields [1] [2]. Furthermore, there is a reduction from the 2D Ising model used

in physics and networking to an integer program, and it is a matter of current debate if integer programs

can more efficiently solve instances of the Ising model than D-Wave quantum annealers [3].

As of right now, a commonly used approach for solving integer programs (as used in commercial solvers)

is a method called branch-and-cut, in which the program is solved numerically without using the discrete

constraints, then through a series of steps it is broken up into smaller subproblems (branching) and/or the

existing constraints are refined (cutting). My project proposal focuses on the latter portion: cutting planes.

Gomory-Johnson cut-generating functions

One presently open area of research revolves around how to find such cutting planes. One method, which

works by manipulating a single row of the simplex algorithm output, uses Gomory-Johnson cut-generating

functions [2]. While the application of these cut-generating functions is straightforward, finding valid cut-

generating functions is not trivial. Presently these functions are found by exhaustive computer discovery

[4]. Furthermore, the space of minimal cut-generating functions is known to be convex, and so there is a

particular focus on trying to find the extreme functions (that is, minimal valid functions that are not convex

combinations of others) [5].

At their core, these functions work in the following way. If we know (from one row of the simplex output)

that

xi +
∑
j∈N

rjxj ∈ f + Z and xj ∈ Z+

then it is a straightforward (but perhaps not obvious) exercise in algebra to show that∑
j∈N
{rj}xj ≥ f

where {·} denotes the fractional part of the argument, i.e. {x} := x− bxc.

By doing this, we have created a new inequality based upon the old constraints, and this inequality serves as

a cutting plane. By adding this to the constraint set, we remove some of the solutions that a numerical solver
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would arrive at that are not valid for the discrete problem. Ideally, we would like to remove as many of the

numerical solutions as possible that are not part of the discrete problem (i.e. we are looking for “deep” cuts).

Gomory-Johnson cut-generating functions generalize the role of {·} in the above example. Instead, we seek

functions πf (·) that can take one row of the simplex tableau and produce a valid cutting plane of this form:∑
j∈N

πf (rj)xj ≥ πf (f) := 1

Such a function πf is a valid Gomory-Johnson function if this last inequality holds for any feasible x.

The relation between any particular cut-generating function and how deep the cut it will produce is an open

problem. This relation is what motivates my project.

Some intution can be gained by looking at some of these cut-generating functions. Computer-assisted

discovery has focused on finding such functions that are piecewise linear with rational breakpoints. Some

are continuous, but they do not need to be. They vary from simple to exotic. There are catalogues of such

functions (I have pasted below a portion of the catalogue from [5]).

Importantly, most (although not all) are piecewise linear functions with rational breakpoints, and all are

maps from [0, 1) to [0, 1]. They extend periodically in the domain. What they are qualitatively doing is

taking the fractional part of a number in the simplex tableau and changing that into a number in [0, 1].
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Project

Each cut-generating function is applied only to the coefficients in one row of the simplex tableau, and so in

application the cut-generating function must act in the absence of any knowledge about the coefficients in

the other rows. For this reason, in this project I choose to look at the distribution of coefficients, and discard

the ordering of the coefficients along with their relation to the underlying variables. Viewed in this light, a

cut-generating function induces a unique function from one distribution of coefficients to another. To reduce

the amount of language needed to describe the remainder of the project, I abuse notation and also refer to

this induced function as the cut-generating function πf , specifying only when the distinction is not clear.

The examplar given earlier in this document is known as the Gomory Fractional Cut (πf (x) := {x}/f). Be-

ing the simplest possible such cut-generating function (that is, the only such function with exactly one linear

segment), I use this as a baseline function in order to judge the performance of other cut-generating functions.

For this project I have explored πf -GFC-neutral distributions, that is, distributions of coefficients that are

mapped via πf to the same distribution of coefficients that would have been produced if the Gomory Frac-

tional Cut had been applied instead. So as not to overload with terminology, I will refer to this as the scaled

invariant distribution, which I define as the distribution which is invariant under the mapping f πf (·).

Through the course of exploring the above material through code, the project became an attempt to corrobo-

rate a conjecture that if a GJ cut-generating function was applied to coefficients matching the scaled invariant

distribution, then the cutting plane produced would not be an improvement over the Gomory Fractional

Cut. If this result was provable in closed form, it would generate momentum in the direction of determining

how to utilize the (known) distribution of coefficients to intelligently choose which cut-generating function

to apply.

Results

For this project I used Prof. Köppe’s Sage code [6] which includes a library of different Gomory-Johnson

cut-generating functions, along with parameterized families of these functions which can be instantiated

using the provided methods.

For the experiments I first assume a uniform distribution on [0, 1] (representing total ignorance of the frac-

tional part of the coefficients). By repeated iteration I generated the (scaled) invariant distrution. I then

use the function to generate a cut for a simple example and visually assess the deepness of the cut.

In the following table I give a visual overview of the results of the project. In the first column, the cut-

generating function itself is shown. In the second column, the scaled invariant distribution is shown; ap-

proximated first by composing the function with itself 19 times (blue line), and then by sampling from a

uniform distribution and evolving the sample 197 times (histogram given in red). In the last column, the cut

generated by the function on the toy example is shown as a red line overlaid on the feasible region (labelled

F). The functions represented in this table are (in order): drlm_2_slope_limit, drlm_3_slope_limit,

drlm_backward_3_slope, gj_2_slope_repeat, and ll_strong_fractional.
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Initially it was my hope that there would be some obvious correlation between the invariant distribution

and the deepness of the cut, but the results are not conclusive on this point. As such, more experimentation

must be done to attempt a definitive result. Among the surprising results is that ll_strong_fractional

gave the ideal cut; that is, it gave a cutting plane that when added to the constraint set, gives the integral

polytope (which can be solved to integrality by one execution of the simplex algorithm). Why this happened

for that particular mapping (and why only that mapping) is not clear to me at this time.

Future Work

As the results from the first round of experimentation was not promising, I have concluded that I will either

need to (a) generate a toy model designed specifically to test the conjecture on a particular mapping, or (b)

choose mappings that optimally displace the volume of their invariant distributions away from the coefficients

in the toy model. The latter seems to be a more tractable approach, but will require a full examination of

the banding behavior of at least one of the maps as it varies by its parameter(s), in much the same manner

is done when examining a chaotic map. Once this examination is complete, it will be possible to select

a parameter in order to optimize particular banding behavior, and evaluate the performance of this now

optimized map on the toy model.
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