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Linear Programming

argmin,, cTx




Integer Programming

argmin,, cTx
st. Ax=b
x el




Simplex Output

xo = 3.30 — 0.10xz — 0.80x3
x1 = 1.30 — 0.10x4 + 0.20x3

z=14.08 — 0.76x4 — 0.58x3




Gomory Fractional Cut

xo = 3.30 — 0.10xz — 0.80x3
x1 = 1.30 — 0.10x4 + 0.20x3

z=14.08 — 0.76x4 — 0.58x3

But if

x2 + 0.10x4 4+ 0.80x3 = 3.30

and

X2, X3, X4 € Loy

it must be true that

0.10x4 + 0.80x3 > 0.30



Gomory Fractional Cut

We add 0.10x4 + 0.80x3 > 0.30 to the constraints:




Cut-Generating Functions

Take one row of the simplex tableau:
X+ nx€f+Z
JeEN

Apply cut-generating function to get a new constraint:

> we(n)x > 1

JEN
Add this constraint to the original problem and solve the modified
problem.



Cut-Generating Functions

3. ELECTRONIC COMPENDIUM

TABLE 1. An overview of the Electronic Compendium of extreme functions, available at https://github.
com/mkoeppe/infinite-group-relaxation-code
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Cut-Generating Functions
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Cut-Generating Functions

— —T1+a <2
8xy + 2w2 <17




Cut-Generating Functions

Which function with which tuning parameters is “best”?

The ideal cut:




Experiment

This type of cut is done in the absence of any knowledge of the
other rows.

At this level, it less important to track the identity of the variables.

Instead, we can pay attention to the collection of coefficients.
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Experiment

This type of cut is done in the absence of any knowledge of the
other rows.

At this level, it less important to track the identity of the variables.
Instead, we can pay attention to the collection of coefficients.

Question:

How does the distribution of (scaled) coefficients change after
applying the cut-generating function?

> Is there an invariant distribution?
» How can it be interpreted?

» Can we use this interpretation to more intelligently choose the
best function to apply?



Results
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Results

T4 <2
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Future Work

» Craft example problems that generate a particular distribution
of coefficients in the tableau

» Leverage available information to optimize cuts over the
tuning parameters



Thanks!

—ri+x2 <2
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