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Spin Models
Dimension

Lattice structure

Interaction

Degrees of freedom

Classical or Quantum



Classical Spin Chains: Ising Model

J < 0: ferromagnetic

J > 0: anti-ferromagnetic

Simulations can find favored lattice 
states for given temperatures 

Easy to measure mutual 
information between spins
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Information in Classical Spin Chains

Entropy decompositions for nearest neighbor, ferromagnetic 
spin-1/2 Ising chain

V. Vijayaraghavan, R. James, J.P. Crutchfield. Anatomy of a Spin, 
Entropy 2017, 19(5), 214; doi:10.3390/e19050214

http://dx.doi.org/10.3390/e19050214


Ising Model as Markov Chain

ε-machine for Ising chain

W.Y. Suen, J. Thompson, A. Garner, V. Vedral, and M. Gu. The 
classical-quantum divergence of complexity in the Ising spin 
chain, arXiv:1511.05738v2 

https://arxiv.org/abs/1511.05738


Quantum Spin Chains
Heisenberg Model:
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XY Model:
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Quantum Subtleties
1. Hilbert Space Dimension:

𝐷 = 2𝐿

L=100 → D ≈ 1030

2. In low-T limit, we only need ground state and 
first few excited states

3. Quantum Measurement Is Different From 
Classical Measurement



Density Matrix Renormalization 
Group Method (DMRG)

1. Start with one spin and add sites until Hilbert space is too large

2. When Hilbert space grows to size m, diagonalize system and 
calculate density matrix

3. Truncate Hilbert space by keeping only largest m eigenvalues

4. Repeat until desired L is reached

Python package: simple-dmrg



Simulating Quantum Spin Chains



Measuring Quantum Spins

Basis

Non-trivial measurements for 
DMRG final state because it is 
not in spin-basis

Must transform each desired 
observable into new basis at 
each DMRG step

Different from classical measurement because:

Entanglement

Measuring individual spin 
orientations locally returns 
classical spin configurations, 
which destroys existing 
entanglement
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1D Quantum Phase Transitions
Change in ground state at T=0

Control Parameters: 
interaction strength, pressure, 
magnetic field, doping 
concentration

Driven by quantum 
fluctuations associated with 
the uncertainty principle

Effects can be measured 
experimentally in quantum 
critical region



QPT in XY Model
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XY Model with Single-Ion Anisotropy [1]

[1] A.S.T. Pires, Quantum-phase transition in a XY model, Physica A 373, 387 (2007) arXiv:1511.05738v2 
[2] F. Pázmándi, Z. Domański, Quantum phase transitions in XY Spin Models, Phys. Rev. Lett. 74, 2363 (1995)

XY Model with Transverse Field [2]

https://arxiv.org/abs/1511.05738


XY Model in Transverse Field
Mott Insulator

Ordered phase

Localized spins

Insulates due to electron-
electron interactions

Superfluid

Fluid with zero 
viscosity

Exhibits long-range 
order

Increase K

M. Endres, Probing Correlated Quantum Many-Body Systems at the Single-Particle Level, (2014)



Conclusions/Future Work
Successfully simulated 1D quantum XY model

Defining information quantities for quantum spin chains involves non-trivial 
measurements

Signatures of Quantum Phase Transition in information quantities can prove the 
quantum nature of the system is being captured

Use states from DMRG algorithm to calculate information quantities (spin-spin 
correlations, entropy decomposition for measurements along chain)

Calculate fully quantum information measures (entanglement entropy between 
blocks of chain, etc.)

ε-machines for quantum spin chains? Or purely quantum models?

Questions?
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