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The quantum XY spin chain is a one-dimensional statistical mechanics model used to understand
the behavior of materials through their microscopic quantum spins and their interactions with
their nearest neighbors. This spin chain and related models exhibit uniquely quantum behavior in
the low-temperature limit, particularly quantum phase transitions. In this project, the XY spin
chain ground state is found using density matrix renormalization group methods, and information
quantities relating to spin measurements can be measured. These methods can be extended to other
quantum models, expanding upon results on information content and signatures of phase transitions
in classical spin chains.

INTRODUCTION

Spin systems are useful in statistical mechanics for
studying emergent behavior of systems composed of a
large number of particles. Each such model consists of
either classical or quantum ’spins’, whose state can be de-
termined by discrete (up and down) or continuous (an-
gle from z-axis) parameters. They can vary in dimen-
sion, lattice structure, and interaction between particles.
Nearest neighbor interactions are both computationally
simple and exhibit interesting behavior, so they are com-
mon in spin models. One of the earliest spin models to
be studied was the nearest-neighbor Ising model, which
exhibits a phase transition between a ferromagnetic and
a disordered phase in 2 and 3 dimensions. Generally
spin models correspond to many physical systems, from
simple ferromagnets to quantum spin liquids and other
exotic states of matter [1].

Classical spin systems have been studied through the
lens of information theory by treating states of the spin
chain as strings of data and then finding thermodynamic
entropies and correlations between spins along the chain
[2]. In this analysis the entropy decomposition for the
1D Ising Model exhibits signatures of phase transitions,
particularly in the peak of the bound information (corre-
sponding to spatial correlations in the spin chain), which
can clearly be seen in Figure 1. This analysis can also
be used for a given classical spin chain to create causal
state models (which can be either classical or quantum in
nature) that reproduce the desired statistics of the spin
chain [3].

The goal of this project is to extend the work done on
information theoretic properties of classical spin systems
(particularly the 1D Ising model) to quantum spin sys-
tems. This introduces a number of challenges not present
in the case of classical spin systems relating to simulation
and measurement. The first is that for a given state of the
quantum spin chain, individual spins are not in a definite
states (up or down) due to non-classical correlations. In
the case of classical spin chains, each site can be updated

individually until equilibrium is reached. However, this
local operation is not allowed for quantum spin chains,
and instead we must treat the state of the chain as a
whole during simulation. Therefore we must use density
matrix renormalization group (DMRG) methods, which
are designed to work in the limit of zero temperature to
find a ground state of the system. Further detail is given
in the main body of this report, and efforts at measuring
spin-spin correlations are described.

BACKGROUND

Classical Spin Chains

Classical spin systems such as the Ising Model and
the XY Model are useful for studying magnetism and
other material properties. In 1D these systems are re-
ferred to as spin chains. The Ising spin chain has been
the subject of considerable interest, and its Hamiltonian
is

H = J
∑
<i,j>

σiσj − h
∑
i

σi (1)

where J is the interaction strength, the first sum is over
nearest neighbors and represents the spin-spin interac-
tion, h is the transverse field strength, and σ = −1,+1.

The classical XY model is also relevant and can be
thought of as representing spins in a plane with a contin-
uous angular degree of freedom. Its Hamiltonian is

H = J
∑
<i,j>

si·sj−
∑
i

h·si = J
∑
<i,j>

cos(θi−θj)−h
∑
i

cos θi

(2)
where θi represents the orientation of spin i with respect
to the external field.
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FIG. 1: The Entropy Decomposition for the 1D, nearest-
neighbor, ferromagnetic spin-1/2 Ising model, from [2]

Information Quantities for Classical Spin Chains

Classical spin chains lend themselves naturally to-
wards a computational mechanics interpretation. Spin
configurations can be viewed as processes consisting of
up spins (1) and down spins (0). The string of bits ob-
tained by reading spin measurements left to right from
a spin chain is a particular instance of the process, and
the distribution over all these possible configurations is
dependent on temperature. The form of this dependence
is the Boltzmann distribution,

P (X−∞:∞) ∝ e
−H
kBT (3)

where X−∞:∞ is the spin chain configuration, H is the
Hamiltonian for the spin chain, and kB is Boltzmann’s
constant. At low temperature the configuration is pre-
dictable since spins will almost always align. At high
temperature the spin orientations are nearly random,
since thermal effects outweigh the nearest-neighbor in-
teractions. At intermediate temperatures the configu-
rations are structured and contain local, spatial corre-
lations. This is represented by the peak in the bound
entropy in Figure 1 for the Ising spin chain.

The states of classical spin chains with nearest-
neighbor interactions can also be represented by ε-
machines, which consist of a set of causal states and
transitions between them with certain probabilities. The
ε-machine for the Ising spin chain is shown in Figure 2
where the transition probabilities, (T00, T01, T10, T11), are
determined by the interaction strength and temperature.
The two causal states correspond to the measurement
most recently seen along the chain (either up or down).

FIG. 2: The ε-machine for nearest-neighbor Ising spin chain,
from [3]

Quantum Spin Chains

Quantum spin chains (in contrast with their classi-
cal counterparts) can only be described using quantum
statistical mechanics. The state of the chain can be a
complicated linear superposition of different states of the
individual spins, and local spin measurements on a given
state have probabilistic rather than deterministic out-
comes. The states of the spin-1/2 chain exist in a Hilbert
space of dimension 2L where L is the length of the spin
chain. Many different basis vectors of this Hilbert space
can contribute to a given state of the chain.

Quantum Phase Transitions

Simulations of quantum systems are most success-
ful when targeting the ground state of the system. As a
result, studies of quantum spin chains cannot show signa-
tures of phase transitions in the entropy decomposition
when temperature is changed, as classical spin chains do.
Luckily there is another class of phase transitions (called
quantum phase transitions) which occur at zero temper-
ature when some other parameter is varied, such as in-
teraction strength, pressure, magnetic field strength or
concentration of a dopant in a material [? ]. Quan-
tum ground states are generically non-trivial and exhibit
interesting behavior due to non-classical spatial correla-
tions, but the specific properties of the ground state vary
with position in the phase space. One specific example of
a quantum phase transition in the Transverse XY Model
between a Mott Insulator phase and and superfluid phase
is detailed below.

DYNAMICAL SYSTEM: THE QUANTUM XY
MODEL

The system being simulated here is the spin-1/2
quantum XY spin chain with nearest-neighbor interac-
tions. It is a simplification of the Heisenberg Model,
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which has spin components oriented in 3D. The Heisen-
berg Hamiltonian is

H = J
∑
<i,j>

−→
S i ·
−→
S j = J

∑
<i,j>

Sxi S
x
j +Syi S

y
j +Szi S

z
j (4)

where the sum is taken over nearest neighbors. The dot
product of the neighboring spins represents the inter-
action between them. For J < 0, the model is ferro-
magnetic, and energy is minimized when the spins are
aligned. For J > 0, the model is antiferromagnetic, and
energy is minimized when spins are pointing in opposite
directions. By constraining the spins to exist in only two
dimensions we get the XY model, which has the Hamil-
tonian

H = J
∑
<i,j>

Sxi S
x
j +Syi S

y
j =

J

2

∑
<i,j>

S+
i S

+
j +S−i S

−
j (5)

where J+ and J− are the raising and lowering operators
associated with the spins, and the second expression is
obtained by performing a Jordan-Wigner transformation
on the first expression [4].

The XY Model with Transverse field is also of inter-
est because it is a slight variation on the above Hamilto-
nian that exhibits a quantum phase transition between a
Mott Insulator Phase and a superfluid phase at T=0 [5].
Its Hamiltonian is

H = J
∑
<i,j>

Sxi S
x
j + Syi S

y
j −K

∑
i

Szi (6)

where K is the strength of the field oriented in the z-
direction. This phase transition occurs at a critical is
shown in Figure ??. The Mott Insulator phase is an or-
dered phase where the individual spins are essentially lo-
calized, whereas the superfluid phase exhibits long-range
order, and this distinction is expected to be reflected in
information quantities for the ground states at various
field strengths.

METHODS

Density Matrix Renormalization Group

For classical spin chains sites can be updated indi-
vidually, which means the computational cost scales with
L. In contrast, simulating quantum spin chains requires
updated the entire Hilbert space, so computation costs
scale exponentially as 2L. In order to find states of a
quantum systems with a small Hilbert space, the tradi-
tional approach is to exactly diagonalize the Hamiltonian
and observe the energy spectrum. However, for a spin
chain of even moderate length the exponential growth of

FIG. 3: Phase Diagram for the XY Model in a Transverse
Field showing the quantum phase transition from a Mott In-
sulator to a superfluid, modified from [? ]

the Hilbert space makes this difficult. A group of com-
putational techniques known as density matrix renormal-
ization group (DMRG) methods can be successful when
the computational cost becomes too great for exact diag-
onalization [6]. One drawback is that these methods are
designed to find the ground states for quantum Hamilto-
nians rather than arbitrary, finite-temperature states. In
classical systems T=0 states are often trivial, but quan-
tum ground states exhibit a wider variety of interesting
behavior, including quantum phase transitions.

DMRG methods truncate the size of the Hilbert
space by ignoring the basis states which contribute lit-
tle to the ground state. In general, DMRG algorithms
start with a single spin and add neighboring spins until
the Hilbert space grows above a maximum size that is set
in advance (m). When adding a spin grows the Hilbert
space to a size greater than m, the Hilbert space is trun-
cated by diagonalizing the existing block of spins. The
basis of the block is changed to the eigenbasis, and only
the m greatest eigenvectors are retained. This procedure
is repeated each time a spin is added to the chain until
the desired system size is reached. For this project, the
python code ’simple-dmrg’ was modified to represent the
quantum XY Hamiltonian.

Quantum Spin Measurements

One complication of using DMRG methods is that
the basis in which the ground state is represented is
changed at every step of the algorithm. Thus the final
state of the system cannot be easily interpreted in terms
of individual spin states. The energy of the system can
easily be extracted from the final state with arbitrary
basis states, but measuring any other observable of in-
terest requires extra effort. The operators corresponding
to spin measurements must be rotated into the new basis
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each time the Hilbert space is truncated. Their transfor-
mation follows the equation

(Szi )j = Oj((S
z
i )j−1 ⊗ Id)O†j (7)

where (Szi )j−1 is the operator for the spin in the z-
direction of site i measured in terms of the previous basis
states, Oj is the matrix rotating into the new basis, and
Id is the identity matrix of dimension d, which is required
so (Szi )j has the right dimension in the new basis. This
operator is then truncated along with the state of the
chain so that only the first m eigenvalues/eigenvectors
are relevant.

Information Quantities for Quantum Spin Chains

By applying transformed spin operators to the each
spin in the ground state of the XY spin chain from the
DMRG algorithm, spin chain orientations that are equiv-
alent to classical states can be obtained. Then compu-
tational mechanics techniques can be applied to these
states to characterize the structure and information theo-
retic properties of the spin chain. However this approach
of using local spin operators to measure individual spins
and characterize the simpler, classical configurations is
expected to destroy the entanglement between sites [7].
Some of this entanglement would be transferred into clas-
sical correlations, and the rest probably cannot be char-
acterized by classical information measures. In that case,
computational mechanics would not be able to capture
the full behavior of the system, and its information con-
tent cannot be represented by an ε-machine or q-machine.
This opens the door for the intriguing possibility of a
more general quantum model which would be able to
fully reproduce the information theoretic quantities of
quantum spin chains.

RESULTS

In this project, the quantum XY spin chain has been
successfully simulated so far and energy measurements
have been fully made. These are shown in Figure 3.
As the length of the spin chain is increased, the energy
per site approaches the ground state energy, which is ex-
actly known to be −1π [8]. The ground state energy for
other quantum Hamiltonians is easy with existing code
as well, including the XY Model with transverse field.
Spin measurements are now possible by modifying the
’simple-dmrg’ code to update spin operators at each step.
At multiple points in this project, the focus has shifted
because the initial approach was flawed. Additional com-
plications such as the measurement of spin operators took
more time than anticipated to complete, so a full analysis
of classical spin configurations from sequentially measur-
ing spins along the final spin chain state was not possible.

FIG. 4: The ground state energy from dmrg methods for the
quantum XY spin chain for different spin chain lengths (L)
and dmrg Hilbert space sizes(m), compared to the exact value
(black line)

This is a focus of work in the near future and should be
attainable. Another important qualification is that, since
dmrg methods are designed for finding ground states, ob-
serving a phase transition in which temperature acted
as a control parameter (as in the classical case) would
not be possible. This required a shift towards quantum
phase transitions with other control parameters, partic-
ularly the XY Model in a transverse field, in which field
strength is the relevant parameter.

CONCLUSION

This aim and scope of this project has shifted re-
peatedly since it began. It became clear that some steps
that are simple in the case of classical spin chains are
non-trivial for quantum ones. In particular, the pro-
cess of taking spin measurements using DMRG meth-
ods and the possibility of seeing quantum phase tran-
sitions at T = 0 were not anticipated. The quantum
XY spin chain is still worth studying despite these ex-
tra challenges. With DMRG methods, we have success-
fully found ground states for the XY model and have the
capacity to do so for various other quantum Hamiltoni-
ans. Measurement of individual spins (and other observ-
ables) is now possible for these spin chains. Furthermore
a natural testing ground for these information properties
presents itself in the form of quantum phase transitions,
which require only slight modifications to our existing
work.

There is much future work to do on this project. The
most obvious extension of this work should be generating
large batches of spin measurement data. With this the
analysis done for classical spin chains can be recreated for
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the quantum XY spin chain at T=0. It is possible that
this will simply recreate the behavior of the classical XY
spin chain because the quantum nature of the spin chain
(i.e. the non-classical correlations between spins) will not
be apparent in these classical information measures. In
that case, intrinsically quantum information measures,
such as bipartite entanglement between two regions of
the chain, may capture the interesting behavior instead.

The ultimate goal of this research project, which
should be obtainable with more time, is capturing quan-
tum phase transitions through information quantities (ei-
ther classical or quantum). This can be definitively an-
swered using the XY-model with transverse field, which
has a phase transition at T=0 for a certain field strength.
Such a result would prove that uniquely quantum behav-
ior is captured in these information quantities. Finally
this work could lead to ε-machine and q-machine repre-
sentations of quantum spin chains. It is also possible that
there is no simple analogy to representations by either of
those model classes. In a particular state of the chain,
every spin can be entangled with every other spin, which
suggests that a model of this chain might have to output
quantum states upon measurement rather than classical
bits. In that case the spin chain results could point to
a more general generator/predictor for purely quantum
systems.

[1] A. W. Sandvik, Quantum spin systems, Summer School
on Computational Statistical Physics, August 2012

[2] V. S. Vijayaraghavan, R. G. James, and J.P. Crutchfield
Entropy 2017, 19(5), 214

[3] W. Y. Suen, J. Thompson, A. J. P. Garner, V. Vedral,
and M. Gu. arXiv:1511.05738, 2015.

[4] S. Kai. ’Magnets, 1D quantum system, and quantum
phase transitions.’ Lecture Notes. 2014.

[5] F. Pzmndi, Z. Domaski, ”Quantum phase transitions in
XY Spin Models.” Phys. Rev. Lett.74, 2363 (1995)

[6] A.L. Malvezzi. ”An introduction to numerical methods
in low-dimensional quantum systems.” Brazilian journal
of physics 33.1 (2003): 55-72.

[7] J. Um, H. Park, and H. Hinrichsen. Journal of Statisti-
cal Mechanics: Theory and Experiment 2012.10 (2012):
P10026.

[8] M. A. Metlitski. ”The XY
Model in One Dimension.” 2004.
https://www.phas.ubc.ca/ berciu/TEACHING/PHYS503/PROJECTS/XYModel2.pdf

[9] A.S.T. Pires, ”Quantum-phase transition in a XY
model”, Physica A 373, 387 (2007)

[10] M. Endres, ”Probing Correlated Quantum Many-Body
Systems at the Single-Particle Level” (2014)

[11] J. Crutchfield Nature Physics, 8 17-24 (2012)
[12] M. Gu, et. al. Nature Communications 3 762 (2012)
[13] K. Wiesner, J. Crutchfield Physica D 237:9 (2008) 1173-

1195
[14] R. Horodecki, et. al. Rev. Mod. Phys. 81, 865 (2009)
[15] J.R. Mahoney, C. Aghamohammadi, and J.P. Crutch-

field Santa Fe Institute Working Paper 15-08-030.

arxiv.org:1508.02760 [quant-ph].
[16] S. Ryu, W. Cai, A. Caro Physical Review A 77 052312

(2008)


