Information-gain Computation

Anthony Di Franco
(un)Natural Computation Spring 2017

Work with Turing-complete model class, not TMs directly.

Prolog-like language: recursive compositions of joint spaces of (discrete)
variation

Measure information about a query and adapt evaluation strategy accordingly
Compress search space

Seek to achieve information-theoretic bounds on efficiency of query answering

Perspectives:

e Kowalski, Algorithm = Logic + Control
o So derive algorithm from logic (specification) by determining control (eval strategy)

e Curry-Howard isomorphism
e Pyke's interleaving of programs with plans / proofs

Precedents:

e Recurrent Neural Networks

o Parameter space sampling for fitting
o Complexity-based regularization

Correctness in software is elusive despite large incentives

Examples:

e Heartbleed: OpenSSL bug, est. >$500 mil. Damage
e Cryptocurrency: theDao hack, $60 mil.

Also, general efficiency of software engineering.

Working with specifications is order of magnitude more efficient than working
with algorithms (Kowalski).

Describing constraint graph vs. describing many / all paths through graph.
lllustrate.

X>3& & X<5

How?

don't enumerate models, start from data and use data bias to consider only
models that fit it well

c.f. universal compressors

How?

Universal compressor:

Incrementally / adaptively builds up dictionary of subsequences or uses
already-decoded sequence as implicit dictionary to compress source sequence

and achieve coding at entropy rate.

Variants (PPM) that work with (predictions of) probabilities of subsequences.

Model is implicit.

So:

Search / choose evaluation strategies adaptively to gain information
quickly

Compress joint spaces resulting from propagation of information
Compress sequences of inferences leading to information gain at query
Use these most frequently informative, compressed sequences with first
priority thereafter

How?

Information measure is Total Correlation

Intuition: maximal uncertainty is all parts of joint space overlap completely with
universe / each other

TC measures reduction in this.

lllustrate.

How?

Adapting evaluation strategy
Predicates can have disjunctions, we should try the most informative one first
Bandit problem. (lllustrate UCB.)

Future: CE method for high-D.

How?

Compressing search space
generalize Schmidhuber's history compression (RNN) to >1D

hinges on recursively finding and conditioning on sufficient statistics in
hierarchy of scales (Illustrate).

State of predictor as sufficient statistic for past to build recursive hierarchy of
predictors at larger (time) scales.

How?

Compressing search space
Apparently nothing special about time.

Generalize => info-clustering on joint spaces of adjacent predicates on
derivation paths, recursively at hierarchy of scales.

Then do distribution estimation within those variable clusters.

How?

Compressing search space

Joint space compression expands alphabet in which paths can be compressed
/ creates tree of perhaps exponentially shorter paths from facts to query.

Alphabet expansion + sequence encoding as in large-alphabet compressed
self-indices. Codes at zero-order entropy.

Turing-class models of given data then fall out by writing CNN-style predicates.

What now?

Adaptive evaluation + search-space and joint-variation compression
= optimal proven-correct computing

(I hope.)

On the agenda for next week

Small relational Prolog-like language embedded in Python
Adaptive evaluation strategy with bandit algorithm done.
Search space / joint space compression not done.

Perhaps smart-contracts-based demo.

(J-M Eber, J Seward, Simon Peyton Jones, “Composing contracts: an adventure in financial
engineering,” September 1, 2000)

