Information-gain computation

Anthony Di Franco
di.franco@gmail.com

Dept. of Computer Science, University of California, Davis

ABSTRACT

Despite large incentives, correctness in software remains an
elusive goal. Declarative programming techniques, where
algorithms are derived from a specification of the desired
behavior, offer hope to address this problem, since there is
a combinatorial reduction in complexity in programming in
terms of specifications instead of algorithms, and arbitrary
desired properties can be expressed and enforced in specifi-
cations directly.

However, limitations on performance have prevented pro-
gramming with declarative specifications from becoming a
mainstream technique for general-purpose programming. To
address the performance bottleneck in deriving an algorithm
from a specification, I propose information-gain computa-
tion, a framework where an adaptive evaluation strategy
is used to efficiently perform a search which derives algo-
rithms that provide information about a query most directly.
Within this framework, opportunities to compress the search
space present themselves, which suggest that information-
theoretic bounds on the performance of such a system might
be articulated and a system designed to achieve them.

In a preliminary empirical study of adaptive evaluation
for a simple test program, the evaluation strategy adapts
successfully to evaluate a query efficiently.

1. INTRODUCTION AND MOTIVATION

Despite large incentives, correctness in software remains
an elusive goal. Declarative programming techniques, where
algorithms are derived from a specification of the desired be-
havior, offer hope to address this problem, since there is a
combinatorial reduction in complexity in programming in
terms of specifications instead of algorithms, and arbitrary
desired properties can be expressed and enforced in spec-
ifications directly. Additionally, giving an explicit specifi-
cation preserves information about program semantics and
programmer intent that is lost by forcing the programmer to
manually translate an explicit or implicit specification into
an algorithm that implicitly and usually only partially sat-
isfies that specification, information that may be used by
automated systems to implement correct behavior in a per-
formant way.

However, limitations on performance have prevented pro-
gramming with declarative specifications from becoming a

mainstream technique for general-purpose programming. With-

out domain-specific knowledge, default evaluation strategies
must strike a sophisticated balance among efficiency, the se-
mantic properties of soundness and completeness, and sim-
plicity, which is relevant both to implementation effort and

to comprehensibility by the programmer, if the programmer
must be relied upon to implicitly influence the behavior of
the search to achieve efficiency, which is in practice how ef-
ficiency is achieved in general-purpose declarative languages
such as Prolog. Furthermore, because of the combinatorial
nature of the searches involved in evaluation, exponential
or worse reductions in efficiency can result from deviations
from the best evaluation strategy, meaning these efficiency
concerns are often decisive in whether a program is prac-
tical to use at all; they are concerns of the highest order.
This, of course, undermines the status of such languages as
declarative, since the task of programming still involves un-
derstanding and influencing the evaluation of the program
at an algorithmic level, and it is insufficient to program only
in terms of the declarative semantics of the problem.

Kowalski’s framing of algorithm = logic + control in the
paper of the same name[5] provides guidance here. Accord-
ingly, to obtain an algorithm that implements the logic of
a specification, we must add a control component (that is,
a choice of order of evaluation of the declarative logic) that
uses that logic to produce the desired result efficiently.

To address the performance bottleneck in deriving an algo-
rithm from a specification in this way, I propose information-
gain computation, a framework where an adaptive evalua-
tion strategy is used to efficiently perform a search which
derives algorithms that provide information about a query
most directly. The key aspect is to measure information
gain about a goal when a certain control choice is made in
a certain context, and adapt these choices to increase the
rate of information gain. Information gain provides a mean-
ingful measure of progress for a computation, which in turn
provides an objective for optimization for the adaptive strat-
egy. Measuring the progress of a computation in general has
proven difficult otherwise because unbounded effort can be
expended without any indication as to whether the com-
putation will halt if allowed to continue. Here, halting is
replaced with yielding information, and execution proceeds
nondeterministically to find paths that yield information at
the highest rate, sidestepping these issues. Also, the factor-
ing of the program logic into recursive predicates makes it
possible to share information about effective control choices
to achieve statistical efficiency.

Within this framework, opportunities to compress the search
space present themselves, first, by identifying the traces that
contribute the most information to answering a given query,
and then, by compressing these traces. This framing sug-
gests that information-theoretic bounds on the performance
of such a system might be articulated and a system designed
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to achieve them, holding promise for a definitive solution to
the problem of deriving an algorithm from a specification,
and thus to that of declarative software.

To test the core idea, adaptation of the evaluation strat-
egy with respect to information gain, adaptive evaluation of
a fixed Prolog program was implemented and the efficiency
measured and the induced control structure described. The
program was adapted from an elementary Prolog program-
ming example for beginners where ancestorship is computed
recursively in a directed graph. The program was modified
from its usual form to introduce an extremely large amount
of sparsity in the search space, but in a form where sharing
of statistical strength due to the explicitly recursive struc-
ture of the description of the search space should permit
quickly learning a bias away from the costly diversions. The
program confounds Prolog’s default evaluation strategy even
on problems of trivial size but the adaptive evaluation strat-
egy succeeds in evaluating the program efficiently.

The rest of this paper is organized as follows. First, a
focused review of related work; second, a description of the
design of an ideal information-gain-driven system; third, the
design of the experiments to evaluate an adaptive evalua-
tion strategy for a specific representative choice of program;
fourth, evaluation of the results of the experiments; and fifth,
conclusions and future work.

2. RELATED WORK

Prolog is the most well-established and widely-used logic
programming language.[4] Its recursive, top-down decompo-
sition of queries (goals) into subgoals will be retained and
used to advantage here.

Blog[6] and Problog[d] are examples of languages that
combine logical and probabilistic semantics, however they do
not attempt to take advantage of this to improve their evalu-
ation strategies or realize true declarative semantics, instead
relying on standard logic program evaluation and extending
it with a variety of ad-hoc techniques for probabilistic por-
tions of the program. To the best of my knowledge, using
probabilistic semantics to achieve efficient evaluation in a
general-purpose setting is a novel approach, and it yields
benefits for purely logical programs as well as establishing a
framing for integrating probabilistic information into a log-
ical framework.

Schmidhuber’s adaptive history compression[10] will form
the basis for the proposed trace compression, along with
Info-clustering|2], both of which will be discussed in that
context.

Bandit algorithms will play the central role in adapting
the evaluation strategy. Bandit algorithms address the The
literature on bandit algorithms is vast; a highlight relevant
to the present and future work here is Thompson sampling,
a Bayesian framework[7]. The present work uses UCBI, a
simple rule that orchestrates exploration and exploitation
according to a bound on an expected reward estimate mod-
ified with an additive uncertainty term which decreases as
a choice is sampled according to a simple error model. In
Powley and Cowling’s work[8] there is some precedent for
using UCBL1 in a similar setting, to explore an unbounded
tree that yields reward only at its leaves.

3. DESIGN FOR INFORMATION-DRIVEN
EVALUATION

The proposed design has three main aspects. First, an
adaptive technique is used to identify control choices that
tend to yield the most information about the query given
the data. Second, the results of executing these control
choices are examined to determine the most frequently ex-
ecuted traces (equivalently, information propagation paths
from data to the query). Third, these traces are recursively
compressed in a way that creates new, shorter information
propagation paths from the data to the query.

Before considering the design we begin with a review of
the aspects of the usual evaluation strategy in a relational
language with emphasis on the features that lead to difficul-
ties the current design addresses.

3.1 Review of evaluation in relational languages

In a relational language such as Prolog, a program consists
of rules that refer to other rules recursively, and which ulti-
mately may match facts (data). Evaluation proceeds from a
query, which is a top-level goal that is recursively expanded
to subgoals in a left-to-right, depth-first search. When a
fact is matched, it is added to an answer set for the goal
it matches, and these sets are combined according to the
logic of the predicates of the goals they appear in until they
produce a final answer set for the query.

Depth-first search requires the least state for a search;
only a stack of previous goals and position in them must
be maintained. However, one drawback of this approach
is that it is incomplete; for example, a left-recursive rule
would prevent the search from terminating since the rule
would expand into itself ad infinitum.

Each predicate thus implicitly represents a discrete joint
space of variation, and, given data, we can construct the
joint spaces they represent explicitly by evaluating the pro-
gram.

The Prolog strategy described above is a backward-chaining
strategy; it is also possible to use forward-chaining, which
applies rules in a bottom-up fashion, starting from facts that
match rules and then recursively invoking rules those rules
appear in as subgoals until the query is reached. The iden-
tification and use of traces described below uses adaptive
backward-chaining to identify when forward-chaining would
be advantageous and apply it in those cases.

3.2 Adaptive evaluation with bandit algorithms

As mentioned in the introduction, we take the information
about the query as the objective of evaluation, or rather
more specifically the information gained per unit of com-
putational effort expended, and treat the choice of which
subgoal to evaluate in each goal as a multi-armed bandit
problem.[I3] Briefly, in each goal we face a choice of which
subgoal’s tree to explore, in hopes it will match and yield
information about facts at some point. Whenever we en-
counter subgoals that correspond to the same predicate, we
can share information about subgoal choice, since each pred-
icate represents its own joint space.

To measure the information known about a goal, we use
the total correlation[12], which is the sum of the entropies
of the individual variables minus the entropy of their joint
distribution. In the set of variables in this calculation, we
include the variables appearing in the goal, as well as a vari-
able representing a prior over the joint space from which
the variables in the goal may be drawn. Thus under this
measure, information is gained whenever variables are dis-



tinguished from one another and when variables are distin-
guished from their priors. For logic programming, we use
the uniform prior over the discrete set of facts.

Algorithms for multi-armed bandit problems admit sev-
eral desiderata. Those relevant here are succeeding with
high probability vs. only in expectation, and contextual-
ity, or the ability to condition decisions on side information.
The ability to succeed under an adversarial choice of rewards
rather than only with i.i.d. rewards may be important in
problems that closely model an adversarial setting.

The ability to take context into account can be used to
take the current state of information about the goal into
account. The choice of branch to explore next can be condi-
tioned on the amount of effort spent exploring each branch
so far, or a summary statistic thereof, because it is a suffi-
cient statistic for the current state of knowledge. It may also
be possible to condition on the current state of knowledge
directly.

Bearing in mind these desiderata, we can proceed with
Exp4.P,[1I] an algorithm which works in both stochastic and
adversarial conditions, accepts contextual information, suc-
ceeds with high probability, and achieves a regret bound
with a square root of a log factor of the optimal bound.

We associate the state of a bandit choice algorithm with
each predicate in the program, and measure the information
gained per unit effort in exploring a branch, using a budget
for further expansions that may occur during that explo-
ration to ensure that the exploration terminates and the
effort can be accounted for properly. This budget may be
incrementally increased as in an iterative-deepening search
strategy.

3.3 Hot traces and optimistic forward-chaining

Because the most frequently taken control paths are now
determined by an optimal procedure for selecting those that
yield the most information the most quickly, we can find
these control paths either by keeping statistics during exe-
cution or examining the weights of the bandit choice algo-
rithms for a query and its constituent subgoals.

Identifying these traces brings several benefits. First, they
can be optimistically executed in forward-chaining mode
whenever a fact that matches one is known, since they have
already been determined to belong to the optimal algorithm
for taking that fact into account. Second, they may be heav-
ily optimized by techniques from tracing JITs. Third, since
they are lacking in control flow and specify the data they
consume explicitly, they are especially amenable to execu-
tion on dataflow-oriented hardware such as GPUs, FPGAs,
and vector processors.

However, perhaps the most significant possibility follow-
ing from this tracing is compression of the search/inference
space, described below.

3.4 Compressing traces

We can attempt to compress traces in the following way,
a generalization of Schmidhuber’s history compression|10]
for sequences which does not require a total order, i.e. to
space-like rather than time-like relations.

In history compression, a hierarchy of representations of a
sequence is learned by learning a predictor of the sequence,
and constructing a new sequence that consists of the indices
of mispredicted symbols along with the correct symbol, and
so on recursively with that sequence as desired or until no

more compression is obtained.

To generalize beyond sequences, I propose using info-clustering|2]

to learn dependency structures within each predicate’s em-
pirical joint distribution, and to learn a probabilistic model
of each of those joint distributions. The parameters of these
models, along with their residual errors, are analogous to
the models and their mispredictions used by history com-
pression. Now, to build up a recursive hierarchy of rep-
resentations as in history compression, we take the model
parameters and residual errors and consider the joint spaces
of those which appear adjacent to one another on a trace,
and recursively apply info-clustering and joint-space model-
ing on those until no more compression can be obtained. The
result is a tree of reduced descriptions of the joint spaces,
which may provide exponentially shorter information prop-
agation paths from facts to query. Facts entering can be
transformed through a number of models logarithmic in the
length of the trace to yield information about the query.

4. EXPERIMENTS

4.1 Simulating evaluation

Despite considerable effort, modifying existing Prolog im-
plementations and implementing a simple Prolog-like lan-
guage from scratch proved prohibitively complex and in-
volved many aspects outside the scope of the present study,
so to investigate the fundamental feasibility of the strategy
arising from the framing here we simulate the relevant as-
pects of the search for solutions that would be used by a
relational language with the proposed adaptive evaluation
strategy. To simulate evaluation, we fix a program and data
and implement by hand the search that corresponds to ap-
plying the evaluation strategy to that program and data.

4.2 Example preliminaries

As an elementary example, consider the following code to
compute the transitive closure of a graph (phrased in terms
of the elementary Prolog programming example about recur-
sively finding ancestors of a person given a set of parent-child
relationships):

ancestor (A, B)
ancestor (A, B)

:— parent (A, B).
:— parent (A, X),
ancestor (X, B).

That is, A is an ancestor of B either if A is a parent of B,
or if A is a parent of another X and X is an ancestor of B.

We can use this as the basis of a simple example to test
the effects of an adaptive evaluation strategy. To represent
the effects of sparsity of the search space, which is the main
obstacle that adaptive evaluation is meant to address, we
add additional rules that confound the search, like so:

ancestor (A, B) :— parent (A, B).

ancestor (A, B) :— deadend (A, B).

deadend (A, B) :— deadend (A, B,
100000000).

deadend (A, B, N) :— N1 is N— 1, N> 0
—> deadend (A, B, N1);
fail .
ancestor (A, B) :— parent (A, X),
ancestor (X, B).

Further we assume these data:



parent (tom, fred).
parent (fred, jill).

Under the default Prolog evaluation strategy, the dead-
end rule is preferred to the informative rules for pursuing
the ancestor search, because it appears first in the program
text, resulting in the program counting down from 100 mil-
lion before resuming a productive branch of the search, and
causing a delay of about 10 seconds to answer the query 7-
ancestor(tom, jill). on my machine. An adaptive search
should be able to detect that a great deal of work is being
performed without yielding information on this branch and
should thereafter strongly prefer another.

4.3 Implementation

This Prolog program under an evaluation strategy that
uses UCBL1[8] (for the sake of simplicity of implementation)
to choose each subgoal was implemented in Python as a
program that selects a branch to explore with UCBI1 in a
loop and updates the answer set and UCB1 parameters as
facts are encountered. Two sets of benchmark data are used:
one corresponding to the Tom, Fred, Jill example above,
and one that creates a 1000x1000 upper-triangular matrix
where elements above the diagonal are 1 with p = 1/8 for a
1 entry, p = 7/8 for a 0 to represent parenthood. The query
in this case asks for the indices of nodes with node 0 as
an ancestor. The information accounting ignores structure
in the joint space and assumes the uniform over pairs in
the joint space as the prior, gaining a bit of information
whenever a descendant is identified, and neglecting to check
when it becomes known that an element cannot possibly be
a descendant. The time, UCB1 expected information gain
estimates, and number of times each predicate was branched
to were reported.

5. EVALUATION

For the Tom, Fred, and Jill example, a negligible amount
of time is taken, and the deadend branch is taken once
(which, however, requires it to be played 100,000,000 times
because it recurs only into itself that many times,) while the
informative branch is taken 3 times, to yield the correct an-
swer. The UCB1 weights learned were about 0.0006 for the
deadend branch and 3.037 for the informative branch, show-
ing that approximately all 2 bits of information were esti-
mated to have come from the informative branch, which was
the case. Since reward was about one bit per branch down
the informative branch, the much higher weight showed that
in only 3 searches of that branch, the uncertainty bound
could not be improved to even within the same order of
magnitude as the true expected utility value, and the pres-
ence of the number 3 in both the leading digit of the branch
weight and the number of times it was taken is a coincidence.

For the 1000x1000 random matrix example, execution took
about 40 seconds, and again took the deadend branch once
by choice and 100,000,000 times total, thereafter taking the
informative branch 145,205 times and again learning a weight
of about 0.0006 for the deadend branch but a weight of about
1.0092 for the informative branch, which is very close to the
true expected value of one bit per branch taken, the un-
certainty bound penalty in the weight term having been re-
duced to a negligible level by the large number of tries of
the branch.

6. CONCLUSIONS, COMMENTS, AND FU-
TURE WORK

The empirical test of the bandit-algorithm-driven evalua-
tion branch choice proved successful, even with an example
program that can take arbitrarily long in Prolog.

This suggests that the additional work to build information-
gain-driven adaptive evaluation into a relational language is
justified. For a pure-logic language, the technique of default-
ing to uniform prior over a discrete domain of facts used in
the simulated evaluation here may suffice, but to use non-
uniform priors, to represent correlations and information-
sharing in the joint spaces in predicates properly, and to
move forward with ideas for search space compression, a full
probabilistic-relational language is called for.

So far, only declarative computation - lacking in side ef-
fects - has been considered. To embrace interaction with an
environment with mutable state into the same framework in
a way that preserves its strengths, we can associate program
fragments with predicates, and thread program fragments
together along traces to produce plans as in Pyke, a Prolog-
like relational language implemented in Python.[3] This will
introduce additional concerns in compressing traces.

The potential for information-theoretic optimality of the
evaluation strategy induced by the proposed methods was
mentioned in passing but not discussed in toto. The claim
is that the bandit algorithm generates efficient evaluation
plans, and that relatively few traces out of all possible traces
will contribute the majority of the obtainable information.
Then, compression of these few traces in such a way that new
information propagation paths of length proportional to the
information content of the joint relation space along the en-
tire trace will reduce evaluation effort along these traces to
costs of the order of an information-theoretic bound. Prac-
tical difficulties may arise in the expense of transforming
through the hierarchy of models. Likewise, practical dif-
ficulties in optimizing and parallelizing traces may arise in
residual control components inherent in the semantics of the
individual base predicates in the system, and in accounting
for interactions with side-effecting plans as mentioned in the
previous paragraph.

In a probabilistic-relational language that had implemented
the recursive joint-space modeling in trace compression, data
could be supplied with an uninformative predicate structure,
similar to that used in a convolutional neural network, where
the same relationship is assumed in each local neighborhood
in a larger joint space. The trace compression would then
automatically build a hierarchy of autoassociators to model
the data as they relate to the query. This suggests compu-
tational interpretations of neuroanatomical structures that
may be explored in future work - cortex as a hierarchy of
autoassociating compressors attempting to learn short infor-
mation propagation paths from senses to query-like struc-
tures directing evaluation in the basal ganglia, emitting mo-
tor plans along these traces, and optimizing motor plans and
maximizing their dependence directly on data in the cere-
bellum.

For choices with large numbers of arms (such as for se-
lection of a discretized continuous parameter,) the CEMAB
method[II] may be applicable. It is derived from the cross-
entropy method, an importance-sampling technique for rare-
event simulation later adapted to hard optimization prob-
lems.
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