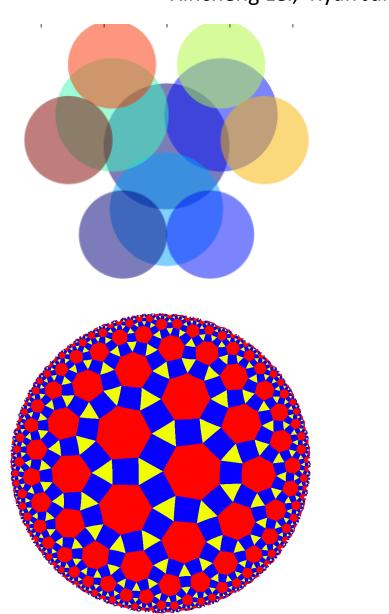
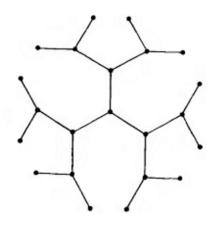
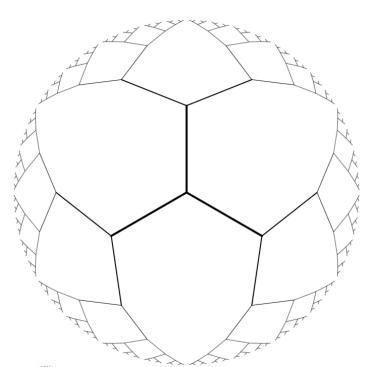
Entropy of Ising model on Bethe lattice: how to define entropy in infinite system? Xincheng Lei, Ryan James, James Crutchfield

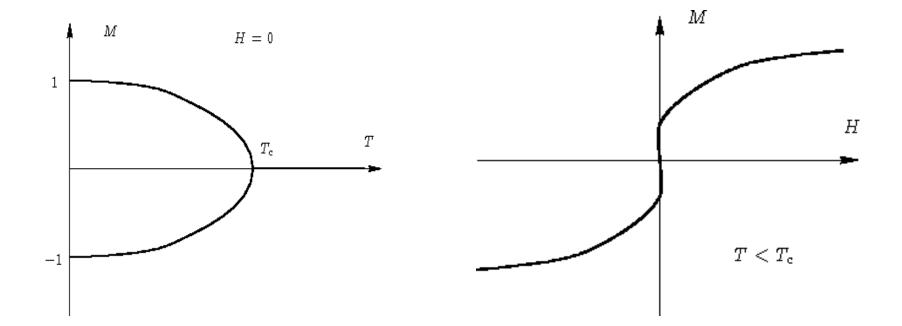




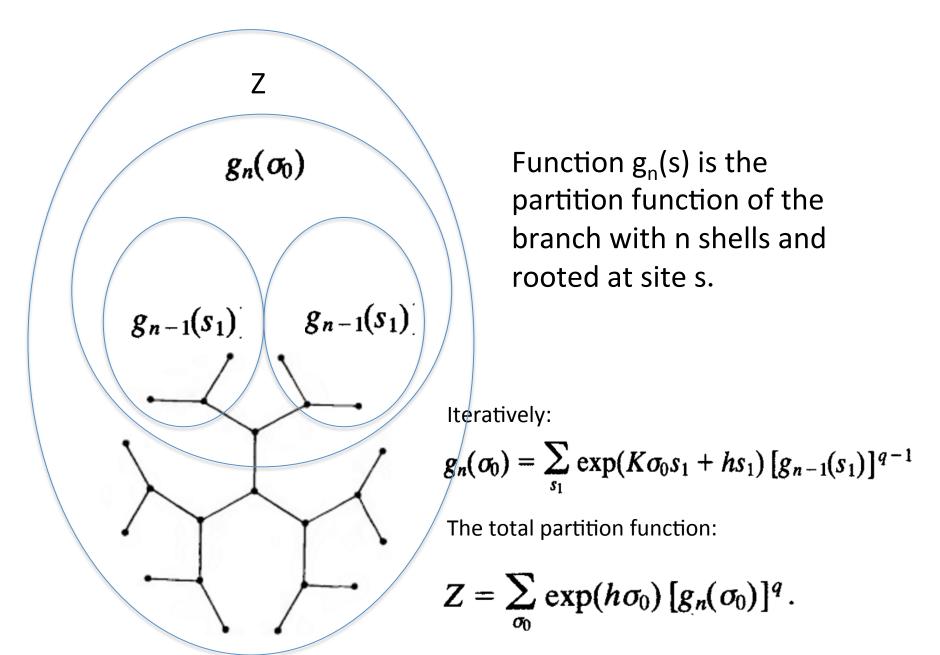


Critical phenomenon of Ising model on Bethe lattice

$$H(\sigma) = -\sum_{\langle i j \rangle} J_{ij}\sigma_i\sigma_j - \mu\sum_j h_j\sigma_j$$



Partition function for branches



Why is there a critical temperature? Bifurcation!

Define $x_n = g_n(s = -1) / g_n(s = +1)$, from the iterator we have a map:

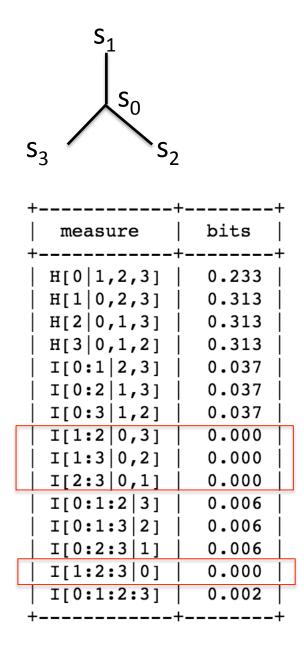
$$x_n = y(x_{n-1}), \text{ where:}$$

$$y(x) = \left[e^{-K+h} + e^{K-h} x^{q-1}\right] / \left[e^{K+h} + e^{-K-h} x^{q-1}\right].$$

With limit $n \rightarrow \infty$: $x_n = x_{n-1}$. When $T > T_c$, there is one fixed point: $x_n = 1$ When $T < T_c$, there are three fixed point: $x_n = 1$, $x_+ < 1$, $x_- > 1$

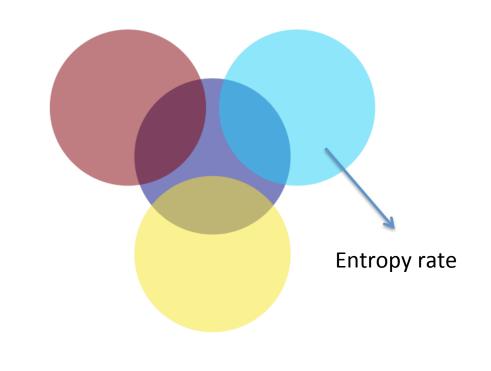
So when $H \rightarrow 0_+$, the spontaneous magnetism (mostly spin up) is associated with x_+ When $H \rightarrow 0_-$, the spontaneous magnetism (mostly spin down) is associated with x_-

Information diagram for local sites neighborhood

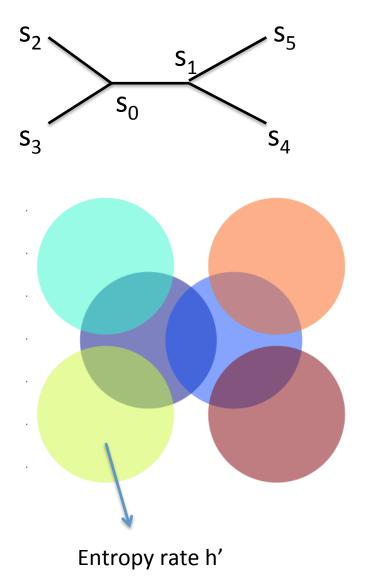


Sites i and j are shielded by the sites on all the possible paths between site i and j.

H [1:2 | 0] = 0H [2:3 | 0] = 0H [3:1 | 0] = 0



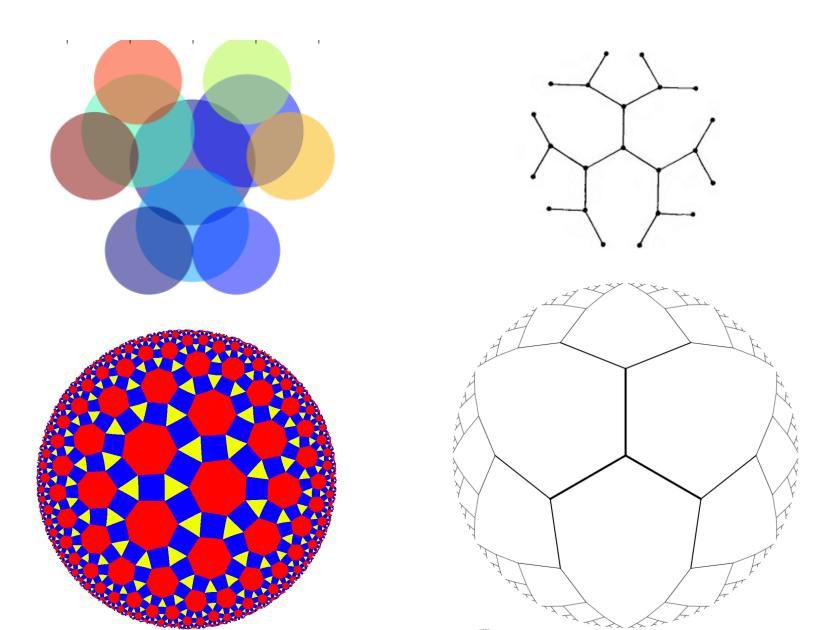
How about the second shell?



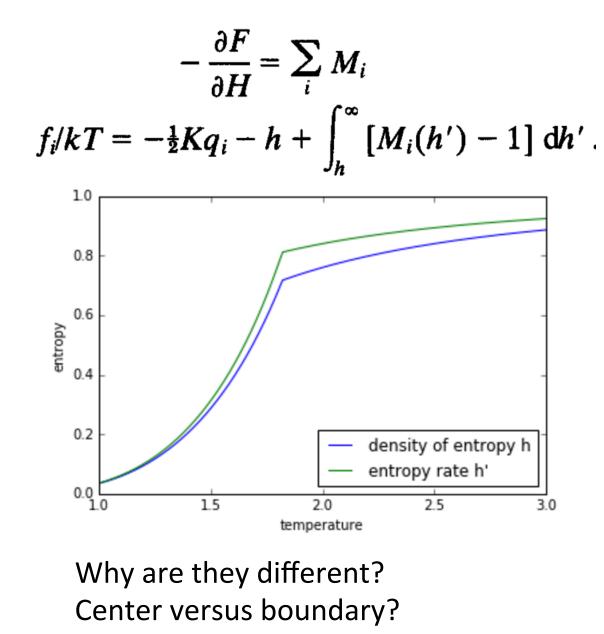
++	+
measure	bits
H[0 1,2,3,4,5]	0.233
H[1 0,2,3,4,5]	0.233
H[2 0,1,3,4,5]	0.313
H[3 0,1,2,4,5]	0.313
H[4 0,1,2,3,5]	0.313
H[5 0,1,2,3,4]	0.313
I[0:1 2,3,4,5]	0.026
I[0:2 1,3,4,5]	0.037
I[0:3 1,2,4,5]	0.037
I[0:4 1,2,3,5]	0.000
I[0:5 1,2,3,4]	0.000
I[1:2 0,3,4,5]	0.000
I[1:3 0,2,4,5]	0.000
I[1:4 0,2,3,5]	0.037
I[1:5 0,2,3,4]	0.037
I[2:3 0,1,4,5]	0.000
I[2:4 0,1,3,5]	0.000
I[2:5 0,1,3,4]	0.000
I[3:4 0,1,2,5]	0.000
I[3:5 0,1,2,4]	0.000
I[4:5 0,1,2,3]	0.000

 $S = E(s_0) + (N-1) * h'$

The same geometry structure



The entropy from thermodynamics



Another new way to entropy near boundary

Trace the map

$$g_n(\sigma_0) = \sum_{s_1} \exp(K\sigma_0 s_1 + hs_1) [g_{n-1}(s_1)]^{q-1}$$

From $g_0(s) = 1$ numerically

$$Z = \sum_{\sigma_0} \exp(h\sigma_0) \left[g_n(\sigma_0)\right]^q.$$

Log(Z) for each site should equal to: $[Z(n+1) - Z(n)] / (q^*(q-1)^{n-1})$

The simulation in still under construction

Analytically, so far I only know

The expectation < log (g_n / g_n^{q-1}) > does not give a reasonable individual log(z) for each site

Also, if we set $g_n(1) = g_{n-1}(1)$, which does not make sense since partition function is an extensive quantity.

However, I can get a $g = g_n = g_{n-1}$ which give the same individual log(z) with thermodynamic method but with a factor of -2.

Conclusion

- Spins on Bethe lattice are shielded by the spin in between them.
- The information diagram for spins on sites away from boundary has the same geometry structure as Bethe lattice
- The entropy rate from the diagram does match the entropy from thermodynamic method
- The concept of individual entropy for a single site in an infinite fractal system is still mysterious.
- The study of map equation for partition function could be a solution

Acknowledge and thanks

- Code for Ising model on Bethe lattice is from: Ryan James
- Thanks Prof. Crutchfield, Ryan for discussion.
- Reference:
- Exact solved models in statistical mechanism. Rodney Baxter