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We study the entropy of spins in Ising model defined on an infinite Bethe lattice. Thanks to the
iterative branching structure of Bethe lattice, there is an exact solution of spin distribution for a
cluster of spins. Based on that, Shannon entropy measurement of the spin cluster is obtained. It
turns out that Shannon information diagram of spins have the same geometric structure as Bethe
lattice. Two features are observed. Firstly, every spin has the same local environment in information
diagram. Secondly, a pair of spins that are not nearest neighbors are shielded by any spin in the
path linking them. In another word, there is no mutual information between non-nearest spins
conditional on the spin in between. By that, the area corresponding to the additive information
for each spin is regarded as entropy per spin. So we get one definition of density of entropy.
Then a method only employing thermodynamic relationships is given also to get the density of
entropy. Comparison indicates they are close. but numerically different. We think both of them are
reasonable interpretations for entropy density. They both focus on central spins (those far away from
boundaries at infinity), but at different levels. This is the reason of two distinct entropy density.

Entropy is an insightful indicator for disorder in a sys-
tem. But the same entropy can be interpreted in two
different ways. Microscopically, in the phase space for a
canonical ensemble, entropy is the Shannon entropy for
all accessible microscopic states. Macroscopically, as a
thermodynamic quantity, entropy is regulated by ther-
modynamic relationships involving free energy, tempera-
ture and expectation of internal energy. For finite system,
these two ways meet with the same value. For an infinite
system , the definition of entropy is challenging. Since
entropy is an extensive quantity, we have to define the
density of entropy instead of total entropy. This method
works well with bulky system where the bulk density is
well-defined. However, things are different in the system
in which surface sites are dominating, i.e., the ratio of
surface area to the bulk volume does not vanish as size
→∞. We need to be careful of the definition of entropy
density: is that the entropy for bulk part or the whole
system? Bethe lattice is a good example for this kind of
infinite surface system. And Ising model is a well stud-
ied statistical model. So in this project we are going to
discuss the entropy of Ising model on a Bethe lattice.

I. BACKGROUND

A. Ising model

Ising model and the generalized is statistical physics
model of interacting spins on lattice. Some collective
phenomena occur in these models including phase tran-
sition, universality in order parameter and frustration
on specific lattice and. More importantly, it is a good
scenario to understand how entropy regulate order and
disorder in thermodynamic system.

In Ising model of N spins on lattice, each spin si can
have 2 quantized values. The space of states is a discrete
N dimensional one containing all possible spin configu-
ration. With a configuration of spins S = s0, s1, ..., the

Hamiltonian is:

H = −J
∑
(i,j)

δ(si, sj) + h
∑
i

si (1)

The interaction is only between nearest neighbor pairs
(i,j). δ(si, sj) is the Kronecker notation. With positive J
(ferromagnetism), neighbors tend to have the same spin,
hence less energy and more stable. With negative J (an-
tiferromagnetism), the more stable configuration is as-
sociated with neighbors in different spins.Here we only
consider the ferromagnetism scenario.

The second term is the coupling between each spin and
external field h. With large h, spins will be forced into
the same direction with h. Under critical temperature,
a non-zero spontaneous magnetism exists while external
field is gradually tuned to zero. Tuning from positive /
negative external field leads to positive / negative sponta-
neous magnetism. So, M |h→h+

6= M |h→h− . This abrupt
critical phenomena is a consequence from a bifurcation
in partition function, which we will discuss later.

In fig. 1 and fig. 2, critical phenomenon of Ising model
is shown. To be noticed, the phase transition does not
emerge on every lattices in all dimensions. On Bethe lat-
tice, there is a phase transition. But no phase transition
shows up on the Cayley tree. So the infinite boundary
distance is a key point here.

FIG. 1. Hysteresis phenomena at temperature below Tc. Even
though the external field is tuned to zero, there is non-zero
spontaneous magnetism.
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FIG. 2. Spontaneous magnetism versus temperature when
external field is zero. Above Tc, it is zero. Below Tc, two
non-zero values of spontaneous magnetism show up associated
with hysteresis from positive or negative external field.

B. Bethe Lattice

Bethe lattice is a generalization from Cayley tree. It is
a tree-like structure in which each node is equivalent to
each other. All nodes have the same degree of q, which is
called degree coordination. Starting from one node as a
root, q nearest neighbors consist of the first shell. Every
nearest neighbors have q − 1 neighbors except the root
one, then we have the second shell. We can pick any node
as the root and will get the same Bethe lattice. To show
the equivalence between node, Bethe lattice can be drawn
on the hyperbolic plane. It is an infinite non-Euclidean
plane with curvature in which every point is equivalent,
like the feature of Bethe lattice. In fig. 3, fig. 4, a Bethe
lattice with coordination 3 is shown on normal 2D plane
and hyperbolic plane.

FIG. 3. Bethe lattice with coordination q = 3. Only the first
3 shells are shown. The whole lattice expands to infinity

C. Entropy density versus entropy rate

Shannon entropy measures the disorder of a system.
If the probability distribution Pr(Si) of all state Si is
known, Shannon entropy is defined as:

H = −
∑
i

Pr(Si)log(Pr(Si)) (2)

In Ising model, those states Si are every configurations
of all spins in the phase space. So H grows with the size

FIG. 4. Bethe lattice with q = 3 on a hyperbolic plane. If
we zoom into every node, they have the same local structure
with a 3 fold rotational symmetry and the same edge length.

of lattice. The density of entropy can be defined as a
straightforward way:

h =
H

N
(3)

Where N is the number of site in lattice. h is the effec-
tive entropy for each site. This definition assumes that
each site has the same entropy. Actually, there is no
physics meaning of entropy on one site. The motivation
for entropy density is that we can show the whole entropy
scales as N.

As a consequence, entropy density should be equivalent
to the concept that how much entropy is gained when
one more site is added in. Instead of investigating all
spins, now we regard spins as a sequence of process site
by site. In a 1D lattice, the process is scanning all spins
from left to right. The entropy H(N) in the state space
corresponds to block entropy of length N. When N →∞,
we know that these two definitions are really equivalent:

h = hµ = H(si|si−1si−2...) = H(si|si−1) (4)

where hµ is the entropy rate. Markov order equals 1 be-
cause only nearest neighbor interaction exists. For all
square lattices in any dimensions, the equation above is
valid. So entropy density is just entropy rate for those
systems. In a Bethe lattice, a natural way to scan all
sites is exploration of the whole lattice shell by shell
from a root. Since it is not a stochastic process with
a forward time direction, how should we define the rate?
The Shannon information diagram unveils the fact that
entropy grows in a branching way just like the Bethe lat-
tice grows.

II. EXACT SOLUTION OF ISING MODEL ON
BETHE LATTICE

Owing to the simple and iterative structure of Bethe
lattice, there is a analytic exact solution of Ising model
on it [1]. For a statistical model, knowing the partition
function is the key to all thermodynamic quantities in-
cluding entropy and free energy. Here, instead of solving
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the partition function of the whole system, we focus on it
of subsystems. Define gn(si) as the partition function of
a branch rooted at site i with spin si. To be noticed, the
root i itself is not include into the subsystem. site i has
one nearest neighbor sj in that branch. Then partition
function for this branch can be rewritten as product of
partition functions for its own q − 1 branches. In fig. 5,
the gn corresponding to different branches are shown.

FIG. 5. gn as partition function for branches and sub-
branches. Here we choose root site i = 0. The first branch
is the upward one with site j = 1 in it. Then this branch is
decomposed into two sub-branches rooted at site j = 1. The
partition function for the whole system is Z including all sites.

In a tree, branches are independent to each other. So
sub-branches are independent sub-systems. The whole
partition function is the product of sub-partition func-
tions. So gn(s0) can be rewritten as:

gn(s0) =
∑
s1

exp(Js0s1 − hs1)gn−1(s1)q−1 (5)

This iterative relationship is valid from any node in
shell n to its neighbor in shell n+1. By that, we can get
the joint distribution for any local connected cluster of
spins. Typically, we investigate the root spin s0 and all
spins in the first shell s1, s2, ..., sq. The joint distribution
is[2]:

p(s0, s1, s2, ..., sq) = exp(βJ
∑
i∈[1,q]

s0si)
∏
i∈[1,q]

[gn−1(si)]
q−1/Z

(6)
Where Z is the total partition function as:

Z =
∑
s0

exp(−hs0)gn(s0)q

=
∑
s0

{
∑
s1

exp(Js0s1 − hs1 − hs0)gn−1(s1)q−1}q
(7)

Notice that n→∞, so gn is also approaching to infinity.

However, the ratio xn = gn(si=+1)
gn(si=−1) can be obtained by

eq. (5). It is reasonable to assume xn ∼ xn+1 ∼ x when
n→∞. From that, x is obtained by the relationship:

x =
e−J + eJxq−1

eJ + e−Jxq−1
(8)

Solving this equation, we can get x numerically. There is
only one solution when temperature is above Tc. There is
a bifurcation at Tc, so two more solutions x+ and x− show
up below Tc. These two non-zero solutions correspond to
spontaneous magnetism. Substitute x back into eq. (6),
the joint distribution is known.

III. SHANNON INFORMATION DIAGRAM

With the joint distribution of a cluster of spins. We
can do Shannon entropy partition for them to get a in-
formation diagram. Let us focus on Bethe lattice with
coordination 3. For a root spin 0 and its nearest neigh-
bors 1, 2, 3, Shannon partition of these four variables is
shown in fig. 6. By the chain rule of conditional entropy,
we can get:

I[1 : 2|0] = I[1 : 2|3, 0] + I[1 : 2 : 3|0] = 0 (9)

So there is no mutual information between two spins in
first shell conditional on the root spin. Though the mu-
tual information between them are not zero. Spins in the
first shell are correlated, but the correlation is shielded
by the spin in between them. In fig. 6, information di-
agram is shown. Be aware, there is a non-zero overlap
between 1 and 2 inside 0. The graph is incorrect for the
part inside 0. However, if we only care about how much
entropy is gained from spin 1,2,3. The conclusion is each
of them contribute I[1|0, 2, 3] = I[1|0] as an entropy rate.

Also, entropy for each spin itself is the same. We can
regard any of spins 0,1,2,3 as the root and get the same
information diagram.

I[0] = I[1] = I[2] = I[3]

I[1|0] = I[0|1]
(10)

Till now, we can use the expansion process to explore
all spins on Bethe lattice. The entropy gain every time a
new spin is added is the entropy of the new spin condi-
tional on the spin from which it grows. The direct father
spin is the casual state for the new spin. However, it is
not a standard Markov order 1 process. New spins only
depend on one past spin, but not the most recent past
one.

I[snew|Spast] = I[snew|sdirectfather] (11)

To prove it, we also show the Shannon partition and
information diagram of the second shell. fig. 8,fig. 9. Now
we choose one root, all of the first shell and two spins in
the second shell. Still, the previous conclusion is true.
Information diagram has the same geometrical structure
as Bethe lattice. fig. 10
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FIG. 6. Shannon partition of root spin and the first shell.
Several zero mutual information are marked.

FIG. 7. Information diagram of root spin and the first shell.
The half-moon area is the entropy rate.

IV. ENTROPY FROM THERMODYNAMIC
VIEW

Entropy, as a thermodynamic quantity, is regulated by
thermodynamic relationship:

F =< E > −TS − ∂F

∂H
= M (12)

Where F is the free energy. Since every spin is equiv-
alence, a concept of density of free energy can also be
applied here. So the equation above is converted into:

f =< e > −Ts− ∂f

∂H
= m =< si > (13)

f, e, s, m are all corresponding quantity for a single spin.
Based on that, another entropy density s can be obtained.
If we compare it with our previous entropy rate, they look
similar in the trend from low temperature to high tem-
perature. They even have the same critical temperature
Tcand phenomenon. However, numerically they are dis-
tinct, especially for temperature around Tc. In fig. 11,
both of them are shown. Entropy rate from information

FIG. 8. Shannon partition of root spin and the first and
second shells.

FIG. 9. Information diagram of root spin and the first and
second shells. The half-moon area is the entropy rate.

measurement is slightly larger than the entropy density
from thermodynamic relationship.

In both methods, we only concern about spins far away
from boundary. In information measurement, the joint
distribution is obtained from partition function rooted at
spin si. And the assumption xn = xn+1 infers that only
central spins are considered in entropy rate. The range
on which information method is valid is smaller than the
range on which thermodynamic method is valid. Though
the latter one also calculates the density for central spins,
they have different standards of ”central”.

In the future, I would like to explore the entropy of
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FIG. 10. Information diagram has the same structure as
Bethe lattice

Ising model on a very large Cayley tree. On such a finite
system, g0(s) = 1 is a seed for the iterative map from
gn−1 to gn. All the gn can be obtained in a numerical

way. Then we can see how the difference between entropy
for boundary spins and central spins scale as size of lattice
grows. It can help us to understand more about entropy
distribution in infinite system.

FIG. 11. Comparison between entropy density from thermo-
dynamic view and entropy rate from information view
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