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Abstract

Information theoretics as developed by Shannon and Crutchfield offer power tools

to examine stochastic and deterministic processes [1], [2]. We apply these tools to

written English, following earlier work by Shannon [3]. Methods are compared and

proposed to minimize sampling error. We also examine using information theoretic

models to study structure at different levels of language. Following earlier work, we

use autocorrelation functions to examine structure in novel length texts [4].

1 Introduction

1.1 Motivation

The increased understanding of natural language through mathematics is an endeavor

with a long history. Its modern incarnation owes much to C. E. Shannon’s influential work

A Mathematical Theory of Communication, in which Shannon defines what has come to

be known as the Shannon entropy [1]. This work has been examined and expanded over

the years, resulting in a coherent and well defined set of quantities that form the basis for

Information Theory [2]. This field has also given rise to various predictive models, among

them ε-machines, a minimal optical predictive model of dynamical systems.

Shannon’s original purpose in studying information theory was to examine English

messages through communication lines for the Bell Telephone Company. In pursuit of

this goal, he attempted a measurement of the entropy of printed English in 1950 that

has held up well, with some limitations [3]. Shannon’s work, while groundbreaking, was
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constrained by available data and measurement techniques. Futhermore, Shannon makes

entropy measurements based on letter frequencies, but we expect there to be interesting

structure on the level of words and syntax that can be further studied. These things have

been previously discussed, with varied results [4], [5].

1.2 Synopsis

The original goal of this project was to study the information theoretic quantities of

written language as defined by Crutchfield et al. using the large corpus of written language

made available by information gathering companies like Google [2]. A measurement of the

block entropies up to word length nine was performed, along with a measurement of block

entropy rates. This study prompted a short look at designing predictive word models,

using Markov chains and word blocks of different lengths. This mimics the approach by

Shannon in 1948 to replicate natural language through purely statistical means [1].

This report also includes a cursory overview of methods designed for studying natural

language at the word level, which have been performed in largely separate disciplines.

Words are defined here to be sequences of letters that exist between two spaces in written

language. Words have been examined mostly through statistical word frequency models

such as Zipf’s law, as well as an examination of word auto-correlation in text [4], [5], [6].

2 Background

2.1 Definitions

The definitions of commonly used information theoretic quantities are produced below

for ease of reference in this report. Any lesser used quantities will be defined in the main

text as necessary.

Definition 2.1. Shannon entropy Let X be a random variable that assumes the values

x ∈ χ, where χ is some finite set. Denote the probability that X assumes some value x by

Pr(x). The Shannon entropy of X is defined by

H[X] = −
∑
x∈χ

Pr(x) log2 Pr(x)

.
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The units of H[X] are bits. Note that to go from the Shannon entropy of a single variable

to the Shannon entropy of a length-L sequence we simply replace x with sL, a block of L

consecutive variables. We call this the block Shannon entropy, or simply block entropy.

Definition 2.2. Entropy Rate The source entropy rate hµ is the rate of increase with

respect to L of the block Shannon entropy in the large-L limit, defined by

hµ = lim
L→∞

H(L)

L

.

Definition 2.3. Entropy Gain Entropy gain is the growth in H(L) with increasing L.

It is calculated by taking the numerical derivative of H(L),

∆H(L) = H(L)−H(L− 1)

.

Note that ∆H(0) = log2 |A|.

We consider the entropy gain to be an estimate of how random the source appears is only

blocks of length L are considered. With this definition we identify H(L) to be the finite-L

approximation to the entropy rate hµ, hµ(L). We also refer to this as the block entropy

rate. Of course, we expect the block entropy rate to approach hµ at increasing L.

Definition 2.4. N-Gram An N-gram is a sequence of length N variables x ∈ X where X

is the alphabet belonging to a written natural language. While in principle the size of the

set of N-grams at any given N is |A|N , in general there are forbidden words, so that the

set of N-grams that occur in written lenguage at length N is much smaller than the set of

all possible N-grams.

Definition 2.5. Zipf’s Law Zipf’s law is an empirical law stating that certain types

of data will follow a Zipfian distribution, a kind of power law distribution. The simplest

Zipfian form is

f(r) ∝
1

rα

where r is rank in a frequency table, f(r) is frequency, and α is a parameter that varies

by dataset.

3



2.2 System

2.2.1 Letters

In general, we model the written English language as a stationary stochastic process.

On the level of letters, the alphabet A, may seem well defined, but it is actually a matter of

debate. The simplest definition would include the 26 letters of the English alphabet and no

other characters. However, we may also include the space, punctuation marks, and Arabic

numerals. Additionally, while uncommon in English, accented and unusual characters do

occasionally appear. To control the size of possible N-grams, in this paper we take the

simplest definition of A, the 26 letters of the English alphabet.

We consider the English language to be a stationary process, although it is not unrea-

sonable to imagine the probabilities of N-grams changing in time. However, the probability

spectrum of 1-grams has remained remarkably consistent for hundreds of years, and in gen-

eral time differences in N-grams for N > 2 are averaged out in large corpora [7].

2.2.2 Words

Obviously, the space of all English words is too large to be reasonably represented by

an information theoretic alphabet. Although with a large enough corpus it may be possible

to get a good measurement of single word entropy, for the short term work represented

by this study it is more appropriate to restrict methods to ones not requiring such a large

database.

As covered in section 3.2, auto-correlation functions are another way to examine in-

formation structures in written English. In this construction, we only consider the words

present in a novel length text, after eliminating words that occur with a frequency above

some threshold. This alphabet size, depending on the setting of the threshold parameter,

ranges between approximately twenty thousand and half a million words in the work done

by Alvarez et al. [4].

The method of treating words based on their frequency can be recast as separating

words out based on their use in a text. This technique stretches back to 1958 when Miller

separated out “function words” and “content words”, identifying the former as words that

serve mostly grammatical purposes and the latter as mostly nouns, verbs, adjective and

adverbs [5]. Miller then showed that these two classes, although very roughly partitioned,

produced length-frequency relationships with very different shapes.
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Figure 1: The frequency of single letters, ranked, in Peter Norvig’s data sets [7].

3 Methods

3.1 Letters

For the calculation of the information theoretic quantities defined in section 2.1, we use

the American Google Books corpus, which contains about 155 billion words [8]. Helpfully,

this huge database was distilled by Google’s Peter Norvig. The methodology for distillation

is as follows:

• Norvig began with the Google books N-grams raw data set, which gives word counts

of individual words in all books scanned by Google. Note - while we defined N-grams

in section 2.1 as any possible sequence of variables from our alphabet, Google defines

N-grams as sequences between two spaces.

• He then combined data from the over 200 years spanned by the Google books corpus.

Any entry with a character other than the 26 letters of the alphabet was discarded,

as well as case sensitivity.

• Norvig then produced tables of counts for words and letters, including specific counts

for various letter positions within words.
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Figure 2: A plot of relative frequencies of various bigrams. Bigrams not appearing in
Norvig’s data are struck through [7].

Using these data sets, it was easily to pull the counts for N-grams up to N = 9, from

a distilled database that consists of about 3.5 trillion letters. The frequencies of 1- and

2-grams can be seen in figures 1 and 2, respectively. Although the counts of N-grams for

N > 2 are too extensive to show here, the 26 most common N-grams up to N = 9 are

shown in figure 3.

Using these frequency counts, we make the assumption that by normalizing these counts

we can immediately produce the probability of of N-grams (as defined in definition 2.4) up

to N = 9. This assumes, of course, that the counts produced by Norvig’s data sets accu-

rately represent the frequencies of N-grams in all written English. The level of confidence

we can place in this assumption is further discussed in section 4. Once the probabilities of

N-grams is determined, the block entropies can be determined using definition 2.1. This

was done using python, with the code below. Furthermore, the block entropy rates were

found using definition 2.2, again using python.

de f percentage ( ngram ) :
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Figure 3: A listing of the 26 most frequent N-grams, up to N = 9 [7].

f o r i in range ( l en ( ngram . i l o c [ : , 0 ] ) ) :

p r i n t ( ‘ Percentage of ’ , ngram . i l o c [ i , 0 ] , ‘ i s ’

( ngram . i l o c [ i , 1 ] / sum( ngram . i l o c [ 0 : , 1 ] ) ) ∗ 1 0 0 )

de f entropy ( ngram ) :

f o r i in range ( l en ( ngram . i l o c [ : , 0 ] ) ) :

p r i n t ( ’ Entropy of ’ , ngram . i l o c [ i , 0 ] , ’ i s ’ ,

−(ngram . i l o c [ i , 1 ] / sum( ngram . i l o c [ 0 : , 1 ] ) ) ∗
l og ( ( ngram . i l o c [ i , 1 ] / sum( ngram . i l o c [ 0 : , 1 ] ) ) ) / l og ( 2 ) )

In his original 1948 paper, Shannon attempted to make series approximations to English

using a 27 symbol alphabet, with 26 letters and a space [1]. This model was designed to

use the conditional probability distribution of N-grams to determine the next letter in

a sequence. For example, to zeroth order the approximation assumes all symbols are

independent and equally probable. To first order, the probability distribution of 1-grams is
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used to sample the next symbol. To second order, the next symbol is chosen from sampling

from the probability distributions of bigrams starting with the previous letter. In other

words, the next letter is chosen based on the conditional probability distribution of the 27

possible symbols that could follow E, or any other symbol. This method can be expanded

further by sampling from the distribution of 3-grams, 4-grams, ect. This simple Markovian

model, while not particularly intelligent, does a good job of producing English-esque text

at around N = 5, for a large enough sample size. Examples of our Markovian text, for

different sample spaces, are given in section 4.2.

3.2 Words

Although results from this project for studies on the level of words are still very

preliminary, the methods from previous work will be discussed, with intent to reproduce

and refine.

Beginning with methods developed by Zipf and Mandelbrot, connections long been

made between word frequency, word rank in a frequency table, and word length [5], [6].

For natural languages, Zipf found that α ≈ 1, where α is defined in definition 2.5 [9].

Mandelbrot further generalized this result, proposing a “Zipfian” distribution of the form

f(r) ∝
1

(β + r)α

where α ≈ 1 and β ≈ 2.7 for natural languages [6]. Miller shows that the function form of

this result can be reproduced with minimal assumptions, using only a Markov chain model

in which there is some probability p(∗) of a space and probability 1− p(∗) of a letter. This

model was found to work best with p(∗) ≈ 0.2, as shown in figure 4.

While this method reproduces the rank-frequency relation for written English fairly

well, it does not produce a good approximation to the length-frequency curve. Such a

curve ranks all possible N-grams from an alphabet of 26 letters by length, and plots against

frequency. However, the Markovian model over estimates short words at the expense of

mid-length ones. To attempt to understand this, Miller defines “function words” and

“content words”, showing that the two have qualitatively different length-frequency curves.

These are defined intuitively, with function words including article, pronouns, numbers,

conjunctions and more. A full list may be found in [5].

To further attempt to capture the importance of “function” words, Alvarez-Lacalle et

al. devised the idea of a vector space defined by words within a text, and attempted
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Figure 4: The simple model of words proposed by Mandelbrot.

to find long-range dynamical correlations [4]. Beginning with the set of words w =

(w1, w2, . . . , wi, . . . , wN ), each word is associated with the number of times it appears in

the text mi and a basis vector ei = (0, 0, . . . 1, . . . ), where the 1 occupies the ith position

in the basis vector. Alvarez et al. considered a sliding window A of text of length a = 200.

At each point of the text this window of words comprises a “vector of attention”, defined

−→
V =

∑
j

m2
j (a)

− 1
2 ∑

j

mj(a)ej

which may be considered the normalized sum over the vectors of the words within the

window, weighted by their frequency mj(a). To capture the the most important concepts

or themes in the text, Alvarez-Lacelle et al. built a connectivity matrix M based on the

co-occurrence of words within the window A. The entry Mij counts how often wi occurs

within a distance a
2 of the word wj . This matrix is normalized, and to keep the matrix

a manageable size a threshold value mthr is defined to be the number of occurrences a

word must exceed to in included in M . Finally, single value decomposition is performed,

changing the basis of M into the space of “concept” vectors, which have entries consisting

of the thematic elements of a text. We propose that these concept vectors vj are a more

mathematical representation of the intuitive idea of “function words”, which aim to capture

the thematic elements of a text, minus its grammatical glue. A sample of these concept

vectors may be seen in section 4.

We return to the idea of the vector of attention
−→
V , now defined in terms of the new
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Figure 5: Shannon’s original measurements of the upper and lower bounds on entropy rate
of written English, up to N = 100.

basis vj ,

−→
V ≈

d∑
j=1

Sj(t)vj

where d is an adjustable parameter representing how many concept vectors we chose to

include in our vector space. As our sliding window A moves through the text,
−→
V moves

through the vector space spanned by our concept vectors. If this vector space failed to

capture structure in the text, we would expect
−→
V to perform a random walk. To test this,

Alvarez-Lacelle studied its autocorrelation C(τ) = 〈
−→
V (t) ·

−→
V (t+τ)〉t, where 〈·〉t is the time

average. Note that t is defined as t = l+ δt, where l is the distance into the text and δt is

the time it takes for an average reader to read one word [4].
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Figure 6: The block entropies up to length 9, as calculated from Norvig’s data.

4 Results

4.1 Letters

Shannon’s original measurements of the entropy have stood up surprisingly well, consid-

ering the limitations on data and methods when he performed his experiments in 1950.

Unable to access large databases for N > 3, he performed measurements for N up to

100 by asking human subjects to guess the next letter in a sequence and normalizing the

number of guesses required to reach the correct letter. Despite this method, his estimate

of hµ = 1 bit/letter has been a robust measurement. Shannon’s upper and lower bounds

are reproduced in figure 5.

The measurements performed in this project, shown in figures 6 and 7, are somewhat

problematic. As easily seen, around N = 6 the block entropy rate becomes impossibly low,

and even dips below zero, which is obviously incorrect. This measurement stems from a

systematic sampling error in the database.

One large problem, which can also be seen in figures 2 and 3, is the lack of spaces

represented in Norvig’s database. The database, due to the way the Google books corpus
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Figure 7: The entropy rates up to length 9, as calculated from Norvig’s data.

defines N-grams, contains only sequences of letters between spaces, and does not retain

positional data for these sequences. In other words, the phrase “red skies at night”, as

analyzed by Norvig, will give 11 different 1-grams, 11 2-grams, 6 3-grams, 3 4-grams, 1

5-gram and no grams of length greater than 5. This artificially lowers the number of N-

grams for N > 2, and the problem becomes worse with increasing N. This problem is

systematic to the databases as compiled, and though sampling errors may be adjusted

for using statistical methods, the loss N-grams across words is a huge problem, espcially

considering the average length of a single word in the English language is 4.8 letters [7].

This may be rectified using a few different methods.

Firstly, Google books does offer large datasets of N-grams greater than N = 1, using

their definition. Again, Google’s definition of an N-gram is a sequence of letters, bounded

by spaces. If the average length of a word in the English language is 4.8, the average length

of a Google defined 2-gram should be 9.6. This is already a better sampling environment

for our version of N-grams. By starting with Google’s data-base of 3-grams, and performing

Norvig’s algorithm on this dataset, it should eliminate the problems outlined above.

The second method is to pull a database that retains complete positional data of words
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and sentences, such as Project Gutenberg’s large database of full text books. While this

corpa is not as large as the Google book corpa, it does automatically eliminate the problems

outlined above. It may also be more appropriate a database to use for some of the word-

level analysis outlined in section 3.2. Moving forward, we plan to implement these ideas

and compare results across corpora.

As mentioned in section 3.1, Shannon used a Markovian approximation to English to

produce English-esque texts. For fun, this was reproduced in this project, with results

given below.

After feeding the model the full works of H. P. Lovecraft:

N = 2: ed ing em th had then yiners. an ithome se unt whosecto cur putch

eprate of thiscie, hathe not rand but thic arrat wasen, th the stude hily tomed,

arts ing asird las shose mr. he agodit.

N = 4: inted to themself would ancient complex, even tumuli, which were

seldom was known shelves, true storillare punge precians about bring the new-

four eyes about of his could his possibility

N = 6: the books the grey membrane rolls back on the most made, and here

some charles’s noticed that terrible by little had been my brain that the backs

others lurking in the end to the alienists

The works of Jane Austen:

N = 2: ho!–ither for he mords quaid le on elf man voling exprouloverescomence

onny pure ince, the beinnot and not lifes of mot.empactel!

N = 4: i assurance thoughts as you must like hide found liable. but i to

impatiencies about their confide in these easy time been, or batest indeed, and

elings her.

N = 7: prejudiced again; but so think it influence on the sound apeice to take

him never was greatly, very bright at hartfield; acknowledge that spirit, every

sentence

And the complete works of Shakespeare:

N = 4: thy sworn dare my bucking, as than speak our coast hath base you

lord.- wherefore, undone. me? base you now- who ham. o my lord the gross.

’tis trumpet!
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Figure 8: The frequency of words produced by Madelbrot’s model versus length, as plotted
against a statistical sampling by Miller [5].

N = 7: suffolk’s cloud, and cull’d the lord i have seen the king; hear them lie

till i rouse yesterday suspire, are thine until he be she? julia. what title to alter

not at all?

N = 9: act v. scene i. petruchio. nay, he must not know why i should a villain.

believe’ said she’s gone, thou art hermione.

We see, as expected, that the approximation becomes more like realistic English as N

is increased. However, the downfall of increasing N is also clear in the N = 9 sample of

Shakespeare - act v. scene i. pertruchio has been taken wholesale from The Taming of the

Shrew, because of the large N and relatively short sample size.

4.2 Words

Returning to Mandelbrot’s construction of words as a simple Markovian process, shown

in figure 4, we examine the length-frequency statistics implied by such a model. This model

produces

Ni = N ∗ p(S|L)p(L|L)i−1

words of length i, where N is the number of words generated in the sample. This
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Figure 9: The length-frequency relation for function words in written English is shown by
the dashed curve. The solid line is the rank-frequency relation [5].

function is plotted by Miller in figure 8. Obviously, this model gives a preference for shorter

words, and underestimates the value of mid-length words. Considering that the most

average word length in English based on frequency is 4.8, this model is clearly insufficient.

To attempt to understand this, Miller separates out “function words” and “content words”,

as defined in section 3.2, to attempt to find a reasonable length rank-frequency relation.

The average length of a function word was 3.13 letters, while the average length of a content

word was 6.47.

Miller then plotted both the rank-frequency and the length-frequency, showing that

while rank- and length-frequency curves are similar within the word categories, they are

significantly different between function and content words. Function words, in general,

have a much higher average frequency than content words, and it drops off significantly.
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Figure 10: The length-frequency relation for content words in written English is shown by
the dashed curve. The solid line is the rank-frequency relation [5].

The drop off in length-frequency curve tells us that there are not many content words above

a certain length, and the rank-frequency curve informs us that there is a body of function

words that are used commonly, and not many that are rarely used. In general, this curve

does not have the linear shape implied by Zipf’s law [5].

Meanwhile, both content words plots have flatter slopes, indicating a much more demo-

cratic use among content words. The drop off in rank-frequency does indicate that there

are content words that are much more popular than others. However, note that this drop

off in popularity is well beyond an order of magnitude when compared to the drop off in

function words. Furthermore, the length-frequenct plot does not drop off significantly with

length, telling us that popularity of content words does not depend on length. Again, this

curve deviates from the Zipf power law expected. When taken together, the two plots do

give back the Zipf law, but it is certainly interesting to be able to decompose this rank-

frequency relation based on an intuitive understanding of the purpose of English words.

This project is currently in the process of reproducing this work with larger corpa, as

Miller’s results depend on a sample of only 20,000 words.

The idea of separating out words based on usage in a more mathematical way was
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Figure 11: A reproduction of Table II from Alvarez et al.’s paper Hierarchical structures
induce long-range dynamical correlations in written texts [4].

done by Alvarez et al., followed by the use of auto-correlation functions to find hierarchical

structure in novels. Reproduction of this work is currently underway, but some results

from that paper are reproduced here to give an example of results of word-based analysis.

In figure 11 a sampling of the concept vectors vj from various works are listed. The

rankings given are related to the singular value, assuming that a high singular value is

related to importance in the text. As should be clear, these vectors pull out the most

important thematic elements from the text being studied. For example, the first concept

vector from Moby Dick immediately presents the main characters, location of the story and

the tone of the story. Similarly, the second concept vector from The Adventures of Tom

Sawyer brings to mind the short story of the tickets and bibles from the classic childhood

novel.

The log-log plot of the results of the autocorrelation function as applied to The Adven-
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Figure 12: A log-log plot from Alvarez et al. of the autocorrelation function for The
Adventure of Tom Sawyer for different values of d. A randomized version of the book is
examined in the black dashed line [4].
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Figure 13: A comparison of the autocorrelation functions for the books analyzed by Alvarez
et al. [4].
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Figure 14: Comparison of the autocorrelation fuctions of the Critique of Pure Reason by
Kant, original, randomized while maintaining hierarchy, and completely randomized [4].

tures of Tom Sawyer is shown in figure 12. The parameter d, which represents how many

concept vectors are considered in the concept vector space, is varied from 10 to 125. A

comparison is made with a randomized version of the text, which clearly indicates that the

autocorrelation function captures the structure present in the novel. For short distances

the correlation is about half of the maximum value, and remains above the level of noise

on the order of 1, 000 words.

As d is decreased, the autocorrelation function approaches a straight line on the log-log

plot, which indicates a power law relationship between correlation and word distance. The

range over this behavior is evident depends on the source, which will have some inherent

noise. To estimate this, the autocorrelation function of a randomized version of the book

is also shown. The average value of this function is determined by properties of the specific
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sample.

In figure 13 different autocorrelation functions from various novels are compared, show-

ing no particular relationship between power law exponent and genre. The books analyzed,

in order, are The Metamorphosis by Kafka, Naked Lunch by Burroughs, The Adventures

of Tom Sawyer by Twain, The Illiad by Homer, Don Quixote by Cervantes, Relativity by

Einstein, and Critique of Pure Reason by Kant.

The existence of power laws is often used to infer hierarchical structure in the source

data. It seems reasonable to imagine a novel in particular as having this type of structure,

considering that is is separated into sections, which are further separated into chapters and

futher into paragraphs, ect. Alavarez et al. investigated whether these conclusions were

meaningful by running the autocorrelation function on three different texts: the original,

the original with words randomized within the existing hierarchical structure of the book,

and the book completely randomized. The results of this work are shown in figure 14.

Since destroying the hierarchical structure of the book also eliminates the power law, it is

reasonable to claim that this power law originates from the this structure.

5 Conclusion

Although our analysis of the Peter Norvig data sets was less successful than originally

hoped, overall the methods for studying written English in an information theoretic context

are robust and promising. We have proposed throughout this report ideas for moving

forward with this work, including changing the database used for sampling probabilities of

N-grams to achieve better bounds on the entropy of English. Furthermore, current work

is underway on accomplishing recreation of the results outlined in section 3.2.

An additional area of study that is of interest is examining written English on the

syntactical level. Such methods, known as grammars, have been discusses by linguists and

formal language theorists since being introduced by Noam Chomksy in the late 1950s [10].

This area holds great promise for the implementation of ε-machines, which may be layered

with the Shannon Markovian English approximation to produce more realistic samples.

The author is currently experimenting with this, by layering statistical models at various

levels of English to improve predictive capability.
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