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Abstract:  The temporal structure of animal behavior may be an untapped yet fundamental 
source of information about an animal’s behavioral ecology and health. However, little is known 
about which pattern properties might be relevant or might reveal differences in behavior patterns 
of individuals.  We investigated the activity patterns of 14 adult female macaques on 
Koshima Island, Japan. Focal sampling was used to record 56 activity sequences 
(4/individual, ranging from 17-68 minutes) of discretely categorized locomotion. From 
these time series we calculated entropy rates (Hmu) and excess entropy (E). Preliminary 
analysis reveal that there is more structure in monkey locomotion time series than a 
biased coin!  However, the strongest correlation of Hmu and E were still with the percent 
of the observation the monkey was active, and no clear trends were found with individual 
monkey characteristics such as age or rank. Further analysis will include construction of 
epsilon machines from the sequences to calculate additional metrics including statistical 
complexity. Future studies will utilize biotracking technology to collect longer sequences 
with greater precision and finer time scale.  



Introduction 
 

Complex patterns in nature were once considered to be indescribable by mathematics -
unstructured, unpredictable, and random. Yet, with access to new technology and increased 
computing power, the emerging field of complexity science is providing tools to quantify this 
‘roughness’ in nature. Complexity science explores the organization, structure and behavior of 
all types of systems, and though an official definition of ‘complexity’ is still debated, it is 
generally agreed that complex systems share common qualitative properties such as emergent 
collective behavior, information production and processing, and adaptation over time (Mitchell, 
2009). The notion of ‘biological computation’ has become increasingly popular, proposing that 
living systems function as natural information processes (Flack, 2014; Mitchell, 2011; Denning, 
2007). Viewing an animal with its diverse behavioral outputs as a complex system offers a 
holistic approach to understanding behavioral processes, instead of maintaining a reductionist 
view which describes several driving components of behavior separately. An animal’s behavior 
is a product of many different things on many different time scales: evolutionary history of the 
species, genetic composition, rearing influences, interactions with other animals, current 
environment, past environment, hormones, health state, physiology, etc. (and all of these things 
also interact with each other).  Hence, an animal is basically a black box, with measurable 
behavioral outputs. 

Multiple features of an animal’s behavior can be measured; for instance, we often see 
summary statistics such as frequency, count, speed, or duration. However, beyond such summary 
statistics, pattern qualities can also be measured as sequences can have very different structure 
even with the same overall amount of behavior. This structure may hold important differences 
between the behavior patterns of individuals; for example, animals living in the same group 
might move on average about the same amount every day if the group travels together, but some 
may take more breaks, or move in longer bouts depending on their health or social interactions. 
Another instance, an organism may need to eat some amount of food each day to survive, but 
may forage in different number of times of different durations, and we know that the patterns and 
quantities of meals influence our metabolism and health. Indeed, emergent spatiotemporal 
patterns may offer important information about the underlying state of an animal system. Natural 
systems tend to balance order and disorder resulting in structural complexity, and a certain level 
of behavioral diversity (on a gradient between invariably deterministic and random) is 
fundamental to survival (Crutchfield, 2012). Complex structure is thought to give a system 
efficiency, stability, and resilience (West, 1990). There has even been a proposed ‘theory of 
complexity loss in aging and disease’, which postulates that healthy systems output complex 
multi-scaled variability that allows for adaptive capabilities and breaks down with age or illness 
(Goldberger et al, 2002).  For example, the long-range scaling patterns of human heartbeat and 
gait dynamics have been shown to deteriorate in markedly pathological conditions (Goldberger 
et al, 2002b). Measurements of behavioral pattern complexity offers an intriguing avenue to 
explore many concepts in animal behavior such as optimal animal-environment interaction for 
resource acquisition, an animal’s ability to self-regulate its behavior in response to a changing 
environment, and pathological behavioral stereotypy. The measurement of behavioral 
complexity in this regard may be an untapped yet fundamental source of information about an 
animal’s behavioral ecology and health 

 



Background 
 

A small body of work has investigated the pattern structure of animal behavior over time using 
fractal analyses, a class of complexity measures that estimate fractal dimension which represents 
the degree of scaling in the distribution of step-lengths or correlation structure of sequences, and 
the degree of self-similarity and long range correlation in patterns (Peng et al, 1992; Peng et al, 
1994). From the branching growth of plants (Escós et al., 1995) to fluctuations in heart beat 
variability (West, 1990), fractal analyses have been used to characterize organizational complexity 
over space or time in a diverse array of systems. Previous studies have reported that fractal analysis 
can detect subtle changes in ‘hidden’ animal behavioral structure that are missed when using 
traditional measures such as average durations (Escós et al., 1995; Asher et al., 2009; Seuront & 
Cribb, 2011). Variability in behavioral sequence complexity detected by such analyses has been 
linked to many characteristics: differences by sex (social behavior of chimpanzees: Alados & 
Huffman, 2000; foraging and locomotion behavior in Japanese macaques: MacIntosh et al., 2011), 
stress level (boat traffic disturbance in dolphin surface behavior: Seuront & Cribb, 2011; resource 
deprivation in chickens: María et al., 2009), and age (young chickens: María et al., 2009; adult 
macaques: MacIntosh et al., 2011). In addition, states known to be energetically taxing such as 
reproduction, clinically impaired health, and parasite infection have been associated with 
differences in complexity (Japanese macaques: MacIntosh et al., 2011; Spanish Ibex: Alados et al, 
1996; chimpanzees: Alados & Huffman, 2000). However, interpretations of the direction in which 
changes occurred may be flawed due to methodological differences (Eke et al, 2002, Delignieres 
et al, 2005), and most studies used observational periods that did not exceed 30-60 continuous 
minutes, which don’t allow investigation of correlations at larger time scales that may be necessary 
for accurate estimations of fractal dimension. Thus, while findings from these studies suggest a 
promising way to detect changes or differences in behavior pattern and link them to important 
perturbations, the results are difficult to interpret and thorough investigation of behavior pattern 
structure is still lacking. 

 
Bio-logging and Movement Ecology 

 
MacIntosh et al. (2013) carried out the most comprehensive investigation of scaling properties 

in a non-human species, and was able to demonstrate that diving sequences of penguins display 
long-range dependence across at least 2 orders of magnitude by collecting activity data with bio-
loggers across complete foraging trips. While movement data reduce behavior and context to 
sequences of activity and inactivity, they have long been used as indicators of health and wellbeing, 
as seen with the recent explosion of self-tracking devices (step counters, fitbit, etc.), and similar 
technologies have become increasingly more popular for long-term data collection of animal 
movement. While organization of movement is driven by many internal factors (i.e. metabolism) 
and external constraints (i.e. terrain) (Macintosh et al, 2011; Paraschiv-ionescu et al, 2008), these 
patterns are often our only window into the numerous underlying processes of an animal’s 
behavioral ecology (Gurarie et al, 2016). It is the hope of many researchers to be able to detect 
remotely what specific behavior an animal is doing from movement data. While some progress 
has been made using methods from machine learning to identity points of change in behavioral 
states, we ultimately need to understand the deeper structure of movement to successfully 
implement and interpret these analyses (Guarie et al, 2016). Bio-loggers allow for the finer time 
units and long continuous sequences necessary for robust complexity analyses to answer basic 



questions about behavioral organization - What benefits do certain behavior patterns offer an 
individual, and what can we learn about the state of an individual from these emergent patterns? 
At the same time, complexity analyses will allow us to asses precisely what information we are 
actually acquiring about the movement of animals through bio-logging technology. 

To date, no species of animal has been investigated thoroughly enough to understand how 
much variability exists between individuals in the temporal structure of their activity, and how 
much this varies within an individual by behavioral state, landscape, and social environment. This 
knowledge is necessary to create a basic framework to understand and interpret behavioral 
complexity of animals.  This project begins exploring the question: what spatial and temporal 
patterns are observable in the structure of animal movement?   

 
Dynamical system: Wild Japanese macaques 

Japanese macaques (Macaca fuscata) were studied on Koshima Island, the birthplace of 
Japanese Primatology, considered to be one of the most influential research sites in the history of 
animal behavior. About 95 macaques live on Koshima. This population has been studied since 
1948 and all individuals have been identified and marked. Data on general health (e.g. weight), 
pedigrees and the matrilineal hierarchy (dominance rank and lineage) are available, offering 
previous knowledge and easy identification of subjects despite living in a free-ranging, naturalistic 
setting. These macaques have diverse daily routines, spending time grooming on a flat beach, 
foraging for shellfish on rocky shorelines, traveling across the island over steep forest terrain, and 
also spending time in tree canopies. Additionally, the population is regularly provisioned with 3kg 
of wheat 2-3 times per week, creating different social and foraging contexts such that sometimes 
animals are feeding in close proximity on a finite resource, and other times the group is spread 
over wide ranges with little feeding competition. Due to the age, personality, and rank diversity of 
the population, along with the diverse landscape and the multi-faceted nature of macaque societies, 
this study system is ideal by both species and location to investigate between and within individual 
differences in behavioral structure.  

This study was originally designed to complement an ongoing parasite and reproduction 
project where a subset of a Japanese macaque population was treated with anthelmintics to clear 
them of gastrointestinal parasites. Data was collected from 7 treated and 7 control individuals to 
test the hypothesis that the energetic strain of parasites constrains the organizational complexity 
of behavior in Japanese macaques. Unfortunately, this fieldwork coincided with Japan’s typhoon 
season, and access to the island was more limited than we had hoped, yielding a smaller data set 
than planned. More tragically, we speculate the study was compromised due to weather delays in 
data collection following treatment, such that reinfection was likely to have occurred before the 
onset of behavioral data collection. However, this dataset now serves as pilot data for investigating 
differences of behavior pattern based on individual attributes, island location, and behavioral state. 
A follow-up study will be conducted using bio-logging collars in the Winter of 2017. 
 

Methods: Data Collection and Time Series Analysis 
  
Current data: Observational focal sampling was used to record 56 activity sequences 
(4/individual for 14 focal animals, ranging from 17-68 minutes) of discretely categorized 
locomotion.  Individual monkeys were followed until they were lost, or up to 68 minutes. 
Their behavioral states lasting >3 seconds were recorded as time-stamped records 3 
seconds after the point of change, and these were then coded as binary sequences of active 



or inactive states, one character for each second.  The location and terrain of each 
observation were also recorded. 
 
Future data: I will record sequences of activity and location using a combination of GPS and 
accelerometry bio-loggers, which will be attached on collars to a subset of animals to continuously 
record their activity patterns. These data will be coded into multiple fundamental time series, 
including the overall dynamic body acceleration (ODBA) and binary sequences of activity and 
inactivity. I will conduct observations alongside bio-logging to validate their measures of activity, 
and record the behavioral states of the macaques (feeding on provisions, foraging, travel). In 
addition, I will record data on social interactions of affiliative (grooming, social contact, 
proximity) and agonistic (aggression and status signaling) behavior. 
 
Analysis: It has been suggested that no single statistical measure can quantify the complexity of 
a system and instead a ‘toolkit’ of metrics should be utilized to explore different qualities of 
complicated processes (Goldberger et al, 2002). Therefore, it is my eventual goal to calculate a 
series of measures that describe different pattern attributes in order to investigate specifically 
how behavior patterns vary, and which variations relate to variables of interest.  Currently, I have 
calculated entropy rates (Hmu) of sequences, which represents the amount of randomness or 
surprise in a pattern (such that it is maximized in a fair coin process). I have also estimated 
excess entropy (E), a measure of memory or predictable information in a sequence.  These values 
were estimated by calculating the slope (Hmu) and intercept (E) of the block entropy curve 
created by plotting word length by Shannon entropy (-∑ p log p) of the distribution of binary 
words of a given word length in the sequences.   
 

Results 
 
Section 1 - Exploration of a sequence 
 
I began by investigating the properties of one sequences from the monkey Omoto during a 
foraging bout on the rocky shore of the island that lasted 4104 seconds. Below is the temporal 
structure of active (blue) and inactive (white) bouts over this observation.  
 

 
 
 
 
 
 



 
To the left is a plot of the distribution of 
bout lengths of activity and inactivity.  
Most bouts were short, with a few very 
long bouts.  
 
Below are return maps of the sequence 
which show the lengths of (1) active bouts 
followed by inactive bouts, (2) active 
bouts followed by the previous active 
bout, and (3) inactive bouts followed by 
the previous inactive bout.  
 
 
 
 
 
 
 

 
 
 
Again, we see that the majority of active and inactive 
bouts are very short. Long bouts of activity or inactivity 
are usually followed by short bouts of activity or 
inactivity, and vice versa.  
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Section 2 - Randomization of sequences 
 
In order to see if the block entropy of word frequency distribution method would actually detect 
any structure in the sequences, I randomized a subset of sequences by shuffling the characters, 
and by shuffling the bouts of activity and inactivity.  Below we see entropy by word length plots 
of these sequences. The fully randomized sequences look like biased coins, with intercepts likely 
at 0, and straight block entropy curves that relate to the % of activity in the observation (i.e. the 
bias of the coin).  The actual data look quite different – they would have non-zero intercepts 
(excess entropy), and entropy rates that aren’t predicted merely by their % activity. The data with 
shuffled bouts looks the same as the real data, and most block entropies were the same with the 
exception of the larger word lengths, which varied from actual data by only thousandths of 
points. This is not entirely surprising - since most bouts are small and of similar length, the word 
frequencies likely didn’t vary much from the real data, especially with short word lengths.  
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Section 3 – Hmu and E of all sequences 
 
I plotted block entropy curves for 54 of the sequences to see how much variability existed in 
Hmu and E estimates. The colors represent which of the 14 focal individuals the sequences came 
from. I fit these points to lines to get the slope and intercept. 
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I made several plots with these measures to begin exploring what is driving the variability we 
see. Below are plots of Hmu and E for each focal individual.  There exists a fair amount of 
variability within most individuals. 
 

 
 
 
 
To check these metric’s dependence on the length of the sequences, I plotted by sequence 
duration (seconds).  There did not seem to be any relationship here, which is good and expected. 
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However, both Hmu and E were correlated with the % activity in the sequence.  
 

 
 

 
The % activity is also related to the 
terrain/location in which the observation 
occurred. In fact, in previous analysis of these 
data, the only significant finding was that % 
activity was predicted by location, such that 
they are least active on the beach.  In other 
words, we have shown with science, that 
monkeys like to relax on the beach.   
 
Given the relationship between Hmu and E 
with % active, it is not surprising we see a 
very similar relationship between Hmu and E 
with location (plots below). 
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Finally, I plotted Hmu against E.  While these 
values are not mathematically required to be 
correlated, in these data they appear to be loosly 
related.  It seems like a lot of the variability may 
likely be driven by different amounts of activity 
in the sequences. Looking at the primary 
behavioral state of the sequence (what 
behavioral context was occurring during the 
majority of the sequence: travel, forage, social 
interaction, rest) might be valuable.  
 
There appeared to be no relationship between 
Hmu and E with age, rank, or whether or not the 
monkey had an infant.  
 
 

 
 

Conclusion 
 

While there is nothing striking sticking out from these measures with regards to specific 
attributes of the monkeys, it seems as though the structure of monkey activity has less 
randomness and more memory than a biased coin, which is at least encouraging.   
 

Future Directions 
 

The next step is to model epsilon machine representations of these sequences. To start, I 
will try to model them as an alternating renewal process between active and inactive states 
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(Marzen et al, 2015). An epsilon machine is a unique, predictive, and minimal representation of a 
process, and models a generative scheme of a pattern (Crutchfield, 2012). Using Baysian 
inference, I will determine which epsilon machine models could have produced the sequences, 
and estimate an array of complexity measures from the weighted averages of a posterior 
distribution of possible generative machines. Beyond Hmu and E, several complexity measures 
can be calculated from epsilon machines, all of which represent several independent properties of 
sequence structure (Crutchfield & Feldman, 2003). For instance, statistical complexity represents 
the amount of ‘hidden’ information required to make an accurate prediction. Transient 
information represents the amount of information that needs to be extracted before an observer 
can ‘synchronize’ with a process. All of these metrics represent different properties of a 
sequence, and could relate to different attributes of individual monkeys, or functions of 
behavioral states.  These methods provide a framework to make precise interpretations about 
differences in movement patterns.   
 
 

 
Example of an alternating renewal process machine from Marzen et al, 2015. 
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