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Abstract 

The goal of this research is to begin to understand movement ecology from an 

information theoretic standpoint. Bayesian Structural Inference is used to select a family 

of hidden markov models to characterize the generating process of movement decisions. 

Entropy rate is calculated from a sample from this family of models to estimate the 

entropy rate and predictability of the underlying process. 

 

 



 
 

Introduction 

Movement ecology is burgeoning sub discipline of behavioral ecology that seeks to 

understand the causes and impact of animal movement. Development and accessibility 

of animal wearable tracking devices has lead to a glut of movement data while theory is 

still being developed. One of the applications of movement ecology is prediction animals 

locations over time. These predictions can allow wildlife managers to make informed 

decisions about policies and resource allocation. 

However, researchers’ ability to accurately predict animals locations is constrained by the 

entropy in their movement. The entropy rate and predictability in human movement has 

already been investigated. Song et al. found that given sufficient history, it is possible to 

predict the cell-tower that a user’s phone will communicate with at a given day an hour 

with 60%-93% accuracy. My project is the first step to create a product that will allow 

movement ecologists to use their data to estimate predictability in their study species.  

Song et al. used an estimator based on the Lempel-Ziv algorithm to determine the 

entropy of their system. However, this method only provides a point estimate of entropy 

for each sequence. Instead, I have used Bayesian Structural Inference to infer a family 

hidden markov models that could have produced each observed sequence. I was then 

able to calculate the entropy rate of a sample of these machines. This method provides a 

posterior distribution of entropy rates for each sequence. 

 

Background 

The data used from 26 individuals in a troop of olive baboons. Individuals were captured, 

anesthetized, and fit with tracking collars. Data was downloaded daily via radio link. After 

1-34 days (depending on the individual), collar was automatically released from the 

animal, and then retrieved by the researcher. GPS data was sampled at 1hz with one 

meter resolution from 6am to 6pm local time. See Strandburg-Peshkin et al. for more 

information. 
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Dynamical System 

GPS locations are a discrete time, continuous space time series. Since methodologies to 

model this type of data as an epsilon have yet to be developed, raw data was 

coarse-grained into a small number of areas. Process could then be considered a discrete 

time-discrete alphabet epsilon machine, and the structure of that machine can be 

inferred using bayesian methods. 

Methods 

Downsampling and Coarse-graining 

 As a first pass, data was downsampled to one reading every 15 minutes. Then to 

discretize the data, k-means algorithm was run independently on each individual’s 

downsampled location history. K=3 was chosen both for ease of analysis and because on 

visual inspection, most individuals seemed to occupy 3 major areas: Northeast, 

Southeast, and West (Fig 1). Data from each individual was treated as a single separate 

data stream. Missing data (including overnights) was ignored. 

Bayesian Structural Inference 

Using the Bayesian Epsilon Machine, I set a prior of all unifiler HMM structures of up to 3 

states with a 3 letter alphabet with beta=4. I then calculated a separate posterior for the 

movement of each individual baboon. Two thousand samples of machines were taken 

from each posterior the entropy rate was then calculated for each sample machine. 

Results 

Despite being estimated independently, the structure of the machines with the highest 

posterior probability are very similar (Fig 2). This is almost certainly because the 

underlying data are very similar.  Except for individual #16 and individual #25 for whom 

we have very little data, each machine has three states, two of which do not have 

transitions between them. This mimics the spatial Structure in Figure 1 where for most 
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individuals the Western cluster is contiguous with both the Northeastern and the 

Southeast clusters, but the Northeastern and Southeastern Clusters do not border Each 

other.  This offers us a first look into how epsilon machine structure mimics spatial 

structure. 

The entropy rates of the machines in the posterior distributions are much lower than the 

entropy rates of the machines in the prior distribution (Fig 3). This suggests a high level of 

predictability in these movement patterns at least at this coarse level. However, this 

predictability could simply be a byproduct of spatial structure itself rather than 

something specific to animal movement. 

Conclusion 

Bayesian Structural Inference can be used to select hidden markov models that reflect 

the spatial structure in an animal movement data set. It is still unclear whether this 

representation will be useful to the animal movement community. 

Future Directions 

This research could greatly benefit from some thoughtful Null Models. For example, 

simulating random random walks and then pushing the simulated data through this 

pipeline. This would allow us to identify the features common to epsilon machines build 

from spatially structured data and distinguish those from features of a particular data set 

or species. 

Future work could also look at the mutual information in movement patterns between 

individuals within a group, and help uncover social ties.  
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Figure 1 

Plot of downsampled data colored by 

cluster using K means, k=3. Each plot 

represents one individual. Clustering was 

done separately on each individual’s data 

so there is no correspondence in color 

scheme among different individuals. 
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Figure 2 

Machine structure with highest 

probability for each individual. Each 

machine is for a different individual. 

Each transition outputs a symbol that 

corresponds to the individual being 

located in one of the location clusters 

above. Within each individual, colors 

are consistent with Figure 1. 
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Figure 3 

Entropy rate (hμ) of the prior (for all individuals) compared to the entropy rate of a sample 

of machines from the posterior for each individual. 
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