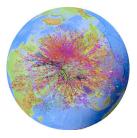
Introduction	Background	Method	Results

On aggregation of network multiplexity

Haochen Wu

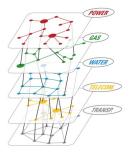

University of California, Davis

hcwu@ucdavis.edu

June 11, 2015

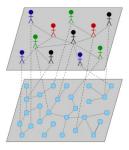
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction ●○○	Background 0000	Method 0000	Results 0000
Network			
Introduction			



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ъ


- Many real systems can be modeled as networks.
- Network include nodes and edges.
- There are some dynamics going on.

Introduction ○●○	Background 0000	Method 0000	Results 0000
Multiplex Network			
Multiplex Net	work		

- Research showed that single layer network may not be sufficient to capture all the feature of the network.
- Different type of edges form different layers of network.
- Multiplex network is a special case of multi-layer network with same node set in all the layers.

Introduction ○○●	Background 0000	Method 0000	Results 0000
Reduced Multiplex Network			
Reduced Multipl	ex Network		

- Many useful algorithms scale poorly with the number of layers.
- It is possible to aggregate some layers together to get a multiplex network with fewer layers while preserve most information of the original network.

Introduction 000	Background ●000	Method 0000	Results 0000
Case Study			
Airline network			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Snapshot of US domestic flight network.
- Weighted by the number of passengers.
- Each carrier forms a layer of network.
- 60 layers in total.

Introduction 000	Background ○●○○	Method 0000	Results 0000
Case Study			
Airline network			

Jenson-Shannon distance

$$D_{JS}(\mathcal{N}_{L_1} \parallel \mathcal{N}_{L_2}) = \frac{1}{2} D_{KL}(\mathcal{N}_{L_1} \parallel \mathcal{N}_{L_{12}}) + \frac{1}{2} D_{KL}(\mathcal{N}_{L_2} \parallel \mathcal{N}_{L_{12}})$$

- \mathcal{N}_L is normalized weight distribution over edge set.
- Aggregate two layers with smallest D_{JS} .

Introduction 000	Background 00●0	Method 0000	Results 0000
Case Study			
Airline network			

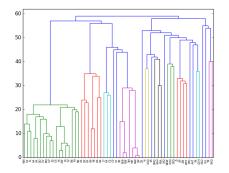


Figure: Dendrogram of Aggregation

・ロト ・聞ト ・ヨト ・ヨト

æ

Introduction 000	Background ○○○●	Method 0000	Results 0000
Motivation			
Motivation			

When is it possible to aggregate two layers together?

Introduction 000	Background ○○○●	Method 0000	Results 0000
Motivation			
Motivation			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When is it possible to aggregate two layers together?

• When they have similar edge properties.

Introduction 000	Background ○○○●	Method 0000	Results 0000
Motivation			
Motivation			

When is it possible to aggregate two layers together?

- When they have similar edge properties.
- Or when they have similar structures.

Introduction 000	Background 0000	Method ●○○○	Results 0000
Network of Chaotic Map			
Network of Cha	aotic Map		

Dynamics

$$x_i(t+1) = (1-\epsilon)f(x_i(t)) + rac{\epsilon}{k_i}\sum_{(i,j)\in G}f(x_j(t))$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- The dynamic at each node is a chaotic map f.
- Edges (i, j) represent coupling between nodes.

Introduction 000	Background 0000	Method ○●○○	Results 0000
Multiplex Setting			
Multiplex Setting			

Dynamics

$$x_i(t+1) = (1 - \epsilon_{L(t)})f(x_i(t)) + \frac{\epsilon_{L(t)}}{k_i} \sum_{(i,j) \in \mathcal{G}_{L(t)}} f(x_j(t))$$

- The edges in different layers take effects alternately.
- *L* is the function to pick a specific layer for time *t*.

Introduction 000	Background 0000	Method ○○●○	Results 0000
Network Topology			
Two Different Mu	ltiplex Network		

• Independently generated two-layers, with the same coupling parameter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Same network in two-layers, with different coupling parameters.

Introduction 000	Background 0000	Method ○○○●	Results 0000
Information Measure			
Information N	leasure		

- Convert the time series to discrete alphabet.
- Infer the $\epsilon\text{-machine}$ and calculate information measures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 000	Background 0000	Method 0000	Results ●000
Small Network			
Small Network			

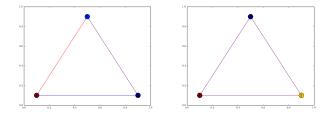


Figure: Small Network with Same Edge Property

Introduction 000	Background 0000	Method 0000	Results ○●○○
Small Network			
Small Network			

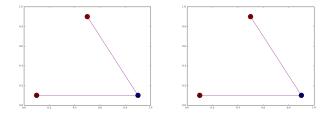
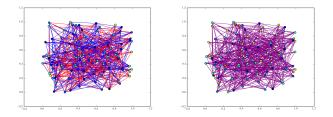



Figure: Small Network with Same Topology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 000	Background 0000	Method 0000	Results ○○●○
Random Network			
Random Netw	ork		

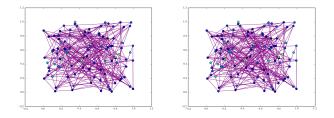


Figure: Random Network with Same Edge Property

・ロト ・四ト ・ヨト ・ヨト

ж

Introduction 000	Background 0000	Method 0000	Results ○○○●
Random Network			
Random Netwo	rk		

Figure: Random Network with Same Topology

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ