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Abstract

While there have been some great advances in nonequilibrium thermodynam-
ics in recent years, a lot of approaches seem to be coming at the problem from
rather different directions. There is often little common ground over interpreta-
tion and importance of various nonequilibrium quantities, chief among them being
entropy production. I will argue that information theory is an emerging thread
that is beginning to tie a lot of these approaches together. The main focus will be
information-theoretic formulations of entropy production.

Entropy is Information

John von Neumann was being more prescient than he realized when he suggested
Claude Shannon name his new information measure entropy. It is no coincidence that
the thermodynamic entropy of Boltzmann and Gibbs shares the same mathematical
form of the information entropy of Nyquist, Hartley, and Shannon. Thermodynamic
entropy is a Shannon information entropy. Historically, entropy has been one of the
least understood concepts in natural science. If you look up entropy in any common
thermodynamics or statistical mechanics text book it would most likely say that entropy
is a measure of disorder, or something along those lines. This is just the latest in a long
line of misinterpretations of thermodynamic entropy [1].

The true interpretation of thermodynamic entropy S is as a Shannon information
measure H. Specifically,

S ∝ H[microstate|macrostate] (1)

In Shannon communication terms, it is this; say you know the macrostate of a thermo-
dynamic system and a Maxwellian demon then tells you the actual microstate of the
system. It has conveyed an amount of information to you equal to the thermodynamic

1



entropy (in units of nats times Boltzmann’s constant). This statement is not just some
technical point but, as we will see, rather fundamental.

That we distinguish between a microstate and a macrostate at all is not trivial.
There may be “fundamental” physics happening on a scale that can not be directly
resolved (microstate), yet at the same time we perceive some “effective” theory occur-
ring on the human scale (macrostate) that is actually observable. The description of
the system on the observable macroscopic scale is not independent from the hidden,
microscopic description. Knowing something about the macrostate of the system tells
you about what microstate it could possibly be in. This is why entropy is so often de-
scribed as a measure of order. A more ordered state often (but not always [2]) coincides
with a low entropy state. Order implies regularities and symmetries in the macrostate,
and these put restrictions on what the possible microstate can be. Thus reducing the
uncertainty in the microstate (low entropy).

Dichotomy of scales in effective theories is not limited to just human scale vs not
humanly resolvable. New phenomena and effective theories seem to exist at all scales
[3]. Philip Anderson championed the notion of a hierarchy of scale in the sciences while
maintaining that each level of the hierarchy is fundamental in its own right, even though
in principle behavior at one scale may be derived from a lower scale [4]. This also is
not just some technical point, but gets right to the heart of complex systems theory.
Understanding how one level emerges from another, as well as the dependencies and
connections between layers of the hierarchy is of utmost importance. New roads being
paved by information and computation theory offer a tantalizing glimpse of a revolution
in how we understand this hierarchy and the scientific endeavor as a whole [5]. The
longest studied and best understood interface between levels is equilibrium statistical
mechanics.

Information in Equilibrium

Equilibrium statistical mechanics bridges two levels of description; the microscopic
Hamiltonian (classical or quantum) dynamics of the particles of a system and macro-
scopic thermodynamics. The classical microstate of the system is given by all the po-
sition and momenta of the particles, in quantum mechanics it is an eigenstate of the
many-body Hamiltonian. The macrostate, or thermodynamic state, is simply a list of
thermodynamic state variables. This thermodynamic state is always defined in conjunc-
tion with external constraints placed upon the system. The most common constraints
are the system being in contact with a heat bath (canonical ensemble), a heat bath
and a particle reservoir (grand-canonical ensemble), or being completely isolated (mi-
crocanonical ensemble). Formally, constraints are specified through the thermodynamic
variables of total internal energy, system volume, and particle number denoted U, V, and
N respectively. In equilibrium, the constraints are time independent. Note this assumes
the absence of any external fields, in which case more variables would be needed to fully
specify the equilibrium state. As discussed below, these three variables (in the absence of
external fields) have been traditionally used in thermodynamics as the constraints that
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fully specify the equilibrium macrostate and define the three types of thermodynamic
equilibrium. The main reason these three play such a big role in thermodynamics is
that they are the quantities that exist on both the micro and macro scales, and are well
defined in and out of equilibrium.

Consider a thermodynamic system and its environment. In the thermodynamics
literature, there are three kinds of equilibrium; thermal, mechanical, and chemical. In
thermal equilibrium the system and environment exchange internal energy U, but have
the same temperature T. In mechanical equilibrium they exchange volume V, but have
the same pressure P. In chemical equilibrium they exchange particles N, but have the
same chemical potential µ. By definition, an equilibrium macrostate is always time
independent. But if the system is not isolated and exchanges one or more of U,V, or
N with its environment, the microscopic values may fluctuate. It is only their averages
that are time independent.

As stated previously, statistical mechanics is a bridge between microscopic and
macroscopic levels of hierarchy. U, V, and N on the macroscale are just averages of their
counterparts on the microscale. But what about temperature, and chemical potential
that don’t have counterparts on the microscale? And what about the most important
of thermodynamic variables, entropy? After all, the Gibbs principle states that the
equilibrium distribution over microstates is that which maximizes the entropy. Why
should this be the case? Realizing thermodynamic entropy is a Shannon information
entropy Edwin Jaynes formulated the information-theoretic foundations of statistical
mechanics and went about answering this question [6]. In the process, he uncovered
some deep insights that are only recently being fully appreciated.

A typical thermodynamic system has of order 1023 particles, each with three com-
ponents of position and three of momentum defining the microscopic phase space. The
macrostate, which is the one directly accessible to us, is defined by a handful of state
variables. Jaynes realized the problem of statistical mechanics is one of inference. What
can those handful of variables tell us about the microscopic configuration of the system?
We certainly can not ascertain the exact configuration, we don’t have nearly enough
information. What we can do however is use the macroscopic information to infer a
distribution of possible microscopic configurations, as was first realized by Boltzmann
when he first developed statistical mechanics.

Jaynes realized the Gibbs principle is just a specific application of a more general
principle of logical inference, which he called the Principle of Maximum Entropy (PME).
Stated in Bayesian terms, the PME is a way of using available information to construct
a prior. Given the full set of possible outcomes of an event and some information about
that event (most commonly in the form of expectation values), what is the most logical
assignment of probabilities one can make for the outcomes? Laplace had realized with
his principle of indifference that if all one knows are the possible outcomes and nothing
else the most logical assignment of probabilities is a uniform distribution. Jaynes used
information theory to generalize this notion to situations when one knows more than
just the possible outcomes. The extra information amounts to a set of constraints the
inferred distribution must obey. One must then find the distribution that is most uniform
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yet still consistent with the constraints. Well Shannon’s information entropy is exactly
a measure of the flattness of a distribution. Thus the most logical distribution is that
which maximizes the entropy subject to the constraints, hence Principle of Maximum
Entropy.

A formal statement of the PME is as follows [7]. Let {xi} be an exhaustive set of
n mutually exclusive propositions. Assume information is interpretable as expectation
values of a set of independent functions over the propositions {fr(x)}, r = 1, ...,m < n.
The constraints on the distribution are thus

n∑
i=1

Pi = 1 , Pi > 0 (2)

〈fr(x)〉 =

n∑
i=1

Pifr(xi) (3)

The PME distribution is that which maximizes the Shannon entropyH(P ) = −k
∑

i PilnPi
subject to the above constraints. Using Lagrange multipliers, this yields

Pi =
1

Z
e−λ·f(xi) (4)

Z(λ1, ..., λm) =
∑
i

e−λ·f(xi) (5)

where λ · f(xi) ≡ λ1f1(xi) + ... + λmfm(xi). The maximized Shannon entropy of the
distribution, denoted S, is given by

S = klnZ + kλ · 〈f〉 (6)

Jaynes showed that this construction uniquely provides the least biased distribution
consistent with the given constraints. Any other distribution carries implicit information
/ bias other than the given constraints.

The current interest however is in the application of the PME to the foundations
of traditional statistical mechanics where one wishes to infer a distribution over possible
microstates subject to the information provided by macrostate constraints. For reasons
that will be made explicit later when the PME is generalized to nonequilibrium settings
we proceed using operator formalism, be it classical or quantum. Thus the set of possible
microstates for which we wish to create a distribution over will be the eigenstates of the
many-body Hamiltonian (up to basis choices in degenerate eigenspaces). The distribu-
tion is encapsulated in the spectrum of a statistical operator ρ. The thermodynamic
constraints U, V, and N are given as expectation values of the Hamiltonian, volume, and
particle number operators.

〈H〉 = TrρH = U (7)

〈V 〉 = TrρV = V (8)
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〈N〉 = TrρN = N (9)

Along with

Trρ = 1 (10)

these are always the constraints used to create the equilibrium microstate distribution.
If a system does not exchange one of these quantities with its environment, the corre-
sponding constraint equation reduces to (10). Therefore, if the system is isolated the
only constraint is (10) and the distribution is the microcanonical ensemble

Pi =
1

Ω
(11)

where Ω is the number of microstates. If the system is in contact with a heat bath (8)
and (9) reduce to (10) since V and N are still fixed on the micro scale while the internal
energy is no longer fixed. Thus (7) and (10) are the final constraints. This gives the
canonical ensemble

ρ =
1

Z
e−βH (12)

with entropy

S = klnZ + β〈H〉 = klnZ + βU (13)

Using ∂S
∂U = 1

T , we find that β is the inverse temperature, as is standard. As a Lagrange
multiplier β enforces the constraint of 〈H〉 = U in the distribution. This matches our
intuition of the physical picture of a system in contact with a heat bath. The system
and heat bath can exchange internal energy, but only in a restricted way in equilibrium.
Specifically, the expected value of the systems internal energy is fixed, which is enforced
by both system and heat bath having the same temperature.

While not providing any new novel results for equilibrium statistical mechanics,
Jaynes’ PME puts the theory on a much more solid foundation of logical inference. It
also allows for concepts from statistical mechanics to be generalized to other fields [8][9].
As we will see later, it also lays the foundations for generalizing statistical mechanics
to nonequilibrium settings. The most important contribution, however, is to shed light
on the role of statistical mechanics as an interface theory bridging microscopic and
macroscopic levels of hierarchy, and the essential role that information theory and logical
inference play at this interface.

Classical Irreversible Thermodynamics

The Gibbs principle of maximum entropy determines the equilibrium macrostate
under given constraints. There have been many similar extremum principles proposed
for determination of nonequilibrium steady-states. Chief among them are extremum
principles of entropy production. By counterexample, we will see this is likely not the
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case. Nonetheless, entropy production still seems to be a very important quantity for
nonequilibrium situations. As with the many misinterpretations of equilibrium entropy
over the years, there is still no clear consensus on just what exactly entropy production
is. Thus the main focus of the remainder of this review will be to try and pin down
entropy production and give its information-theoretic interpretation. If there are to be
general principles for nonequilibrium thermodynamics, they are likely to be based on
information theory. Entropy production and nonequilibrium steady-states are a good
place to start.

We begin with the Classical Irreversible Thermodynamic treatment of entropy pro-
duction, developed mainly by Onsager and Prigogine [10]. This formalism assumes a
local equilibrium field theory in which the system is divided into a continuum of elemen-
tary volume cells. The Gibb’s relation dU = TdS−PdV +

∑
k µkdNk holds in each cell.

Thus intensive thermodynamic variables become functions of space and time

T = T (~x, t) ; P = P (~x, t) ; µ = µ(~x, t) (14)

and extensive variables (excluding volume) become densities

s(~x, t) = entropy per unit volume (15)

u(~x, t) = energy per unit volume (16)

nk(~x, t) = particle number per unitvolume (17)

Changes in entropy have two contributions ;

dS = deS + diS (18)

where deS = dQ
T denotes changes due to exchange of energy and matter and diS are

changes due to irreversible processes.

diS ≥ 0 is the entropy production (19)

The decomposition (18) nicely encapsulates many well-known properties of entropy.
Namely, the Clausius inequality dS ≥ dQ

T ; entropy changes of reversible processes diS =

0 ⇒ dS = dQ
T ; the 2nd Law (which applies for isolated systems) deS = 0 ⇒ dS ≥ 0 ;

and irreversible cycles dS = 0 ⇒ deS = −diS < 0 ⇒ dQ < 0 which means the system
must dump waste heat during the cycle.

In the local equilibrium field theory, the entropy density also obeys the decompo-
sition (18)

ds = des+ dis (20)

It is further assumed that (19) holds for all possible subsystems (dis ≥ 0), and that the
entropy density obeys the balance equation

∂s

∂t
+∇ · ~Js = σ (21)
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Figure 1: Table of Thermodynamic forces and fluxes

where

σ(~x, t) =
dsi
dt
≥ 0 is the local entropy production (22)

Both (19) and (22) are referred to as entropy production in the literature and it is
sometimes not made explicit which one the author has in mind, though this conflation
is usually innocuous. A much more troubling ambiguity often encountered is referring
to any general change in entropy (the full dS in (18)) as entropy production.

Before moving on, we pause to reflect on the presumed extensivity of entropy, dS =∫
V s dV , as well as the balance equation (21). With the insight that thermodynamic

entropy is a Shannon information entropy, neither of these equations seem appropriate for
general nonequilibrium systems. Consider a system that is composed of two subsystems.
The joint entropy of the total system is given asH[1, 2] = H[1]+H[2]−I[1; 2] where I[1; 2]
is the mutual information between the subsystems. Extensivity implies independent
subsystems with no mutual information. Spacial extensivity of thermodynamic entropy
implies no spatial correlation in the system. Just looking at a BZ reaction or Rayleigh-
Benard convection cells quickly convinces one that this is not the case, certainly for
interesting patterning forming nonequilibrium systems. As for the balance equation,
that implies entropy is a locally conserved quantity. This as well does not seem to be an
appropriate statement for information. What exactly should replace (21) in taking into
consideration non-local effects on spatial information is still, to my knowledge, an open
question.

In the Classical Irreversible Thermodynamics literature, local entropy production
is given as the production of thermodynamic forces and fluxes

σ =
∑
α

FαJα (23)

A table of example forces and fluxes is given in figure 1 [10]. In near-equilibrium
situations, the fluxes are linearly related to the forces as

Jk =
∑
j

LkjFj (24)
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Figure 2: Above: a physical picture of heat conduction. Below: a plot of the steady-state
temperature distribution over space

L is the matrix of phenomenological coefficients. It is positive definite, so that insertion
into (23) guarantees the local entropy production is non-negative.

σ =
∑
jk

LjkFjFk ≥ 0 (25)

Furthermore, L is symmetric from the so-called Onsager Reciprocal Relations Lij = Lji.
This is a non-trivial consequence of microscopic reversibility in the form of detailed bal-
ance. Equation (24) generalizes known phenomenological laws such as Fourier’s heat
law, Fick’s law of diffusion, and Ohm’s law. It also encompasses cross-coupling effects,
such as the thermoelectric effect

~Jq = Lqq∇
1

T
+ Lqe

~E

T
(26)

~Ie = Lee
~E

T
+ Leq∇

1

T
(27)

We now use this formalism to analyze the familiar nonequilibrium scenario of heat
conduction. Using the force and flux from Figure 1, the local entropy production is given
as

σ = ~Jq · ∇
1

T
(28)

The total entropy production is then

diS

dt
=

∫ L

0
Jq

(
∂

∂x

1

T

)
dx =

Jq
Tc
− Jq
Th

> 0 (29)

In steady-state, dS = 0 ⇒ diS = −deS. This matches our physical intuition that the
system’s desire to return to equilibrium (diS) is balanced by external driving keeping
the system out of equilibrium (deS). We can also see equation (29) is consistent with

this. In steady-state the entropy entering the system is
Jq
Th

and the entropy leaving is
Jq
Tc

, and so deS
dt =

Jq
Th
− Jq

Tc
= −diS

dt .
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We now turn to the question of whether an extremum of the local entropy produc-
tion determines the well-known steady-state. Using (24), we have

diS

dt
=

∫ L

0
Lqq

(
∂

∂x

1

T

)2

dx (30)

Lqq is given as Lqq = κT 2(x) ≈ κT 2
avg. To analyze the extremum of (30), we use the

Euler-Lagrange equation. Using Lqq as approximately constant,

κ
∂T

∂x
= constant (31)

and the correct steady-state is indeed recovered. However, using the full spatially de-
pendent Lqq, the Euler-Lagrange equation gives

T
∂2T

∂x2
=

(
∂T

∂x

)2

(32)

which yields an exponential steady-state that has not been experimentally observed.
Since we never see this distribution we must either believe that it is impossible to create
a large enough steady-state temperature gradient such that the constant Lqq approxima-
tion fails, or that this steady-state is just not an extremum of the entropy production.
The former is almost certainly not true, and we are inclined to conclude, as many have,
that nonequilibrium steady-states are in general not given by an extremum of the entropy
production.

There are other similar classical (not information-theoretic) approaches to entropy
production and nonequilibrium thermodynamics [11]. The authors of [11] have laid out
a challenge to find a general nonequilibrium theory that encompasses all of the classical
approaches. A nonequilibrium generalization of the Principle of Maximum Entropy was
developed by Jaynes and expanded by Walter T. Grandy Jr. which appears to be the
closest theory yet of achieving this goal [7]. We give a brief outline of the theory, again
focusing on entropy production.

Nonequilibrium Statistical Mechanics

We begin with the PME construction of a dynamical probability distribution for a
general nonequilibrium system. As in equilibrium we will use operator formalism. Begin
with an initial constraint given as the expectation of an operator corresponding to some
observable 〈F0〉. This gives an initial distribution ρ0 with standard use of the PME.
Now introduce an additional constraint 〈F1〉.The distribution is updated to incorperate
this new constraint by remaximizing the entropy subject to both constraints

ρ1 =
1

Z1
e−λ0F0−λ1F1 (33)

Z1 = Tre−λ0F0−λ1F1 (34)
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This is where we see the necessity of operator formalism. If F0 and F1 were func-
tions rather than operators, ρ1 (rather, its distribution equivalent) would always be
seperable. For clarity, let the system be divided into two subsystems A and B with cor-
responding constraints be 〈FA〉 and 〈FB〉. Using functions, ρ1 could always be written as
ρ1 = 1

ZA
e−λAFA 1

ZB
e−λBFB = ρAρB. This will completely miss any possible correlations

between subsystems A and B, unless put in by hand. In information theory terms, this
will always miss any mutual information between A and B. Using operator formalism
takes care of this automatically since the non-commutitve algebra of the operators takes
into account possible correlations. For two operators A and B that do not commute, we
have the identity

eA+B = eA
[
1 +

∫ 1

0
exABex(A+B)dx

]
(35)

which will be used later for purturbative expansions.
Continuing on with construction of the dynamical state distribution, we now con-

sider a collection of constraints {〈F0〉, 〈F1〉, ..., 〈Fm〉}. Again, the distribution is updated
by maximizing the entropy subject to all constraints.

ρn =
1

Zn
exp

[
−

n∑
i=1

λiFi

]
(36)

Zn = Tr exp

[
−

n∑
i=1

λiFi

]
(37)

You can think of these constraints as experimental measurements, in the spirit of infer-
ence. You measure the dynamical evolution of a system on the macroscale, what can you
then infer about microscopic evolution? The sequence of constraints {〈F0〉, 〈F1〉, ..., 〈Fm〉}
could correspond to evolution over time, space, or both. Assume experimental measure-
ments are made over a space-time region R(~x, t). Let {〈F0〉, 〈F1〉, ..., 〈Fm〉} vary over
R(~x, t) and take the continuum limit. This gives the dynamical statistical operator

ρ(~x, t) =
1

Z
exp

[
−
∫
R
λ(~x, t)F (~x, t)d3~x dt

]
(38)

with partition functional

Z
[
λ(~x, t)

]
= Tr exp

[
−
∫
R
λ(~x, t)F (~x, t)d3~x dt

]
(39)

If one just started with a continuous constraint 〈F (~x, t)〉, (38) would be the proper
dynamical statistical operator that is the least biased distribution consistent with the
space-time constraints.

We now discuss linear approximations in near-equilibrium situations. Consider a
system that was in equilibrium in the past, with a corresponding Hamiltonian H. It is
found to be out of equilibrium via the space-time constraint 〈F (~x, t)〉. The statistical
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operator is

ρ =
1

Z
exp

[
− βH −

∫
R
λ(~x, t)F (~x, t)d3~x dt

]
(40)

To first order, the expected deviation from equilibrium of some other operator C(~x, t) is

〈∆C(~x, t)〉 = −
∫
R
K0
CF (~x, t; ~x′, t′)λ(~x′, t′)d3x′dt′ (41)

where

K0
CF (~x, t; ~x′, t′) = 〈F (~x′, t′)C(~x, t)〉0 − 〈F (~x′)〉0〈C(~x)〉0 (42)

The 0 subscripts indicate expectation values are to be taken from the non-perturbed

equilibrium statistical operator, and F (~x′, t′) denotes the Kubo transformation of F .

F (~x, t) ≡
∫ 1

0
e−u lnρtF (~x, t)eu lnρtdu (43)

From this groundwork, most of Classical Irreversible Thermodynamics can be derived,
as well as the other similar formalisms discussed in [11], and the Green-Kubo formalism
for transport coefficients. For much more detail on this and nonequilibrium PME in
general, see [7][12][13].

It is illuminating to replace C by F in (41) and omit variations over space so that
R(~x, t)→ R(t) = [−T, 0]. This gives

〈F (t)〉 − 〈F 〉0 = −
∫
K0
FF (t− t′)λ(t′)dt′ (44)

Running the integral over t′ ∈ R yields a Fredholm integral equation determining λ(t),
and this captures the behavior of F (t) from observations during the interval R. We can
then use this to infer the behavior of F (t) in times outside the interval of observation.
t′ > 0 gives the predicted future of F (t), and t′ < −T gives the retrodicted past of
F (t). Physical influence must propagate forward in time, but logical inference done in
the present can affect our knowledge of the past as well as the future.

Now we turn to the time-dependent entropy. First we must discuss briefly the
concept of thermal driving. In short, thermal driving refers to macroscopic sources
whose effects on the system are known on the macro scale, but details of the driving on
the micro scale are unknown. This is in contrast to dynamical response theory, where
the system is driven by an explicit time-dependent term in the Hamiltonian. We have
essentially already laid the ground work for this, as thermal driving is just a type of
dynamical external constraint imposed on the system. For simplicity we will again omit
spatial variation. Consider a system initially in equilibrium with Hamiltonian H that is
thermally driven by the constraint 〈F (t)〉. The statistical operator is

ρt =
1

Zt
exp

[
− βH −

∫ t

0
λ(t′)F (t′)dt′

]
(45)
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We introduce a source term

σF (t) ≡ d

dt
〈F (t)〉t − 〈Ḟ (t)〉t = −λ(t)Kt

FF (t, t) (46)

where Kt
FF is the full nonlinear covariance function. It is the similar to (42), except

that expectation values are taken with respect to ρt as indicated by the superscript t.
Since thermal driving is entirely macroscopic driving, σF (t) factors out the effects of
microscopic dynamics of F from 〈F (t)〉, and so captures the full macroscopic effects of
the thermal source. This will be useful shortly.

Time-dependent entropy during the driving is given by the Shannon entropy of ρt.

1

k
St = lnZt + β〈H〉t +

∫ t

0
λ(t′)〈F (t)〉tdt′ (47)

It’s time derivative is

1

k

dSt
dt

= β
d〈H〉t
dt

− λ(t)

∫ t

0
λ(t′)Kt

FF (t, t′)dt′

= −βλ(t)Kt
HF (t, 0)− λ(t)

∫ t

0
λ(t′)Kt

FF (t, t′)dt′

= γF (t)σF (t)

(48)

Now use the expression for σF (t) in (46) to write this is as

1

k
Ṡt = γF (t)

(
d

dt
〈F (t)〉t − 〈Ḟ (t)〉t

)
(49)

which gives us a familiar expression

Ṡtot(t) = Ṡt + Ṡint(t) (50)

This is the nonequilibrium stat-mech derivation of dS = deS + diS.
To illustrate some of the subtleties of the difference between Ṡt and Ṡint we go

through a heat conduction example of starting in equilibrium, driving the energy density
to an arbitrary nonequilibrium state, then letting the system relax to a new equilibrium.
Since we are not interested in doing linear expansions near equilibrium we simply write
the statistical operator for the driving phase as

ρt =
1

Zt
exp

[ ∫ t

0
dt′
∫
V
d3x[−β(~x, t′)h(~x, t′)]

]
(51)

with the assumption that the system was in equilibrium at time t = 0. The time-
dependent entropy for the driving is

1

k
St = lnZt +

∫ t

0
dt′
∫
V
d3x[β(~x, t′)〈h(~x, t′)〉t] (52)
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The time derivative of (52) will give Ṡt = deS
dt , analogous to (48). The tendency to

return to equilibrium, as described by the entropy production diS
dt , during the driving

process is implicitly included in the time derivative of (52) as seen by (49). To analyze
Ṡint explicitly, we turn off the driving at t = t1. For all t2 > t1 the system relaxes
towards equilibrium. But what “drives” it to the new equilibrium? As we know from
Classical Irreversible Thermodynamics, gradients in the system (thermodynamic forces)
drive currents (fluxes) that try to smooth out the gradients and restore the system to
equilibrium. This is the basis for the phenomenological constitutive relations (24). Thus
the macro scale constraints during the relaxation process are solutions to the appropriate
macroscopic effective theory, usually constitutive relations such as (24) in conjunction
with appropriate conservation laws. Incidentally, the constitutive relations of (24) such
as Fourier’s law, and Fick’s laws can be rigorously derived in this nonequilibrium PME
formalism [7][13].

In our heat conduction example, the macro constraint is then the solution to
Fourier’s law 〈h(~x, t)〉 with initial conditions given by the expectation value of h(~x, t)
evaluated with respect to ρt at t = t1 when the driving is turned off and relaxation
begins. The statistical operator for t2 > t1 is

ρ(t2) =
1

Z(t2)
exp

[
−
∫
V
β(~x, t2)h(~x, t2)d

3x

]
(53)

Notice there is no time integral in (53). In contrast to the driving phase (51) in which
the driving constraint can vary arbitrarily over time, the constraint governing relaxation
is deterministic. Thus the a time-integral that takes memory effects into account is
redundant. All that is needed is the initial condition given by ρt at t = t1.

The corresponding time-dependent entropy during relaxation is given as

Sint(t) = lnZ(t) +

∫
V
β(~x, t)〈h(~x, t)〉td3x (54)

It is perhaps misleading to label this Sint(t), incorrectly suggesting Stot(t) = St(t) +
Sint(t). Changes in the time-dependent entropy can have two different contributions, as
in (18) and (50). But the time-dependent entropy itself does not have two components
like Stot(t) = St(t) + Sint(t). The label Sint in (54) is just meant to distinguish how
this entropy is calculated using deterministic constraints, in distinction from (52) which
is calculated from arbitrary driving that must take memory of the driving process into
account.

Since we can readily solve Fourier’s law for the relaxation constraints 〈h(~x, t)〉 we
can take the t2 →∞ limit. This yields the expected equilibrium results

ρeq =
1

Z
e−βH (55)

Seq = lnZ + β〈H〉0 (56)

Note that the equilibrium constraint 〈H〉0 =
∫
V 〈h(~x,∞)〉 is already determined at t = t1

since this is when the driving is turned off and the system is isolated. From this point
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on the total energy, and thus 〈H〉0 is fixed. So the statistical operator during the
relaxation phase (53) is always determined by at least as many constraints as the eventual
equilibrium distribution (55). Thus the entropy during relaxation (54) is maximized
subject to more (or the same) number of constraints as the equilibrium entropy (56),
and thus over a more restricted class of variations. This means Sint(t) ≤ Seq, and so
Ṡint ≥ 0, in agreement with the thermodynamic postulate (19).

To conclude the discussion of entropy production in the nonequilibrium PME for-
malism, we once again look at a heat conduction example. This time we look at a
near-equilibrium steady-state distribution

ρst =
1

Zst
exp

[
− βH +

∫
R
∇λ(~x) · ~q(~x)d3x

]
(57)

where ~q(~x) is the energy current operator conjugate to the energy density h(~x) and λ(~x)
is the Lagrange multiplier of h(~x). The linear approximation of the deviation of entropy
from the equilibrium state is

Sst − S0 ≈ −
1

2

∫
R

∫
R
∇λ(~x)K0

qq(~x− ~x′)∇′λ(~x′)d3xd3x′ (58)

Evaluation of the linear covariance function K0
qq = 2kκT 2(~x)δ(~x − ~x′) and λ(~x) = 1

T (~x)

gives thermodynamic result for entropy production (30).

Dynamical Systems Perspective

In an approach similar to the nonequilibrium PME formalism, we next consider a
nonequilibrium process as a symbolic dynamics problem [14]. The micro scale is the de-
terministic dynamical system with phase space Γ and evolution Φ : Γ→ Γ. As discussed
above, the microstates are generally not observable, and we thus have the notion of a
macro scale in which the macrostates ω ∈ Ω form a finite disjoint partition of the micro
scale phase-space Γ,

Γ =

N⋃
ω=1

Cω (59)

where Cω are the phase-space cells of Γ that correspond to the macrostate ω ∈ Ω.
Consistent with the notions of microstates and macrostates in statistical mechanics,
each measurement observable is a many-to-one mapping, with each microstate mapping
uniquely to a single macrostate, but each macrostate can have many distinct microstates
that map to that macrostate. Formally, a measurement observable is the mapping
M : x ∈ Γ → ω ∈ Ω, and the phase-space cells are given as Cω = M−1[{ω}] = {x ∈ Γ :
M [x] = ω}.

On the micro scale, the nonequilibrium process is simply the dynamical evolu-
tion x(t = k) = Φkx0, using discreet time for simplicity. The macroscopic time-series
ω(t = k) = MΦkx0 is then a course-grained description of the process. However, the
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microstates are not observable and so the initial conditions for the nonequilibrium pro-
cess can not be a single microstate x0 ∈ Γ, but rather a distribution of microstates
%0 : Γ → R. This can be from either using a single macrostate or a distribution of
macrostates as the initial condition for the nonequilibrium process. The macro scale
evolution can either be deterministic (hydrodynamics, Fourier’s law, etc.) or stochastic
(Langevin equation, etc.).

For generality, let’s start with an initial macrostate distribution ~p(0). We then use
the PME to generate the appropriate distribution over microstates %(0) consistent with
the macroscopic constraints M [{x ∈ %(0)}] = {ω ∈ ~p(0)}. Now propagate forward in
time on both the micro and macro scales. The micro scale evolution Φ evolves single
microstates x ∈ Γ forward in time. To evolve the distribution %(0) of microstates for-
ward, the Perron-Frobenius operator is used. This yields the fine-grained time evolved
distribution

%
(τ)
fg (x) =

%(0)(Φ−1(x))

J(τ)(Φ−1(x))
(60)

where J(τ) =
∏τ
k=1 J(Φk(x)), and J is the Jacobian determinant of Φ.

Macro scale time evolution ~p(τ) of ~p(0) is done via an appropriate effective theory
(like Fourier’s Law, Langevin equation, etc) or simply another measurement is made
after time τ . This represents the time evolved (observable) macro scale constraints on
the underlying dynamical system. Thus we again use the PME to infer the appropriate

distribution over Γ subject to these new constraints M [{x ∈ %(τ)cg }] = {ω ∈ ~p(τ)} to get

the course-grained distribution %
(τ)
cg .

We must assume a mutual consistency between scales.∫
Cω

%
(τ)
fg dx = ~p(τ) (61)

That is to say, the description on each scale is describing the same physical process and
everything is properly accounted for. We don’t want, for example, the distribution over
macrostates that is experimentally observed actually being influenced by an external
field that is not included in Φ.

Since %
(τ)
fg takes all microscopic correlations into account during the evolution Φ, it

is generally true that %
(τ)
fg 6= %

(τ)
cg , while (by definition) %

(0)
fg = %

(0)
cg . We therefore define

the relative entropy as

S
(t)
rel = DKL

[
%
(t)
fg ||%

(t)
cg

]
(62)

where DKL

[
%||%′

]
=
∫
% ln %

%′ dx is the Kullback-Liebler divergence of %′ from %. It mea-
sures the amount of information lost when assuming the distribution %‘ when the actual

distribution being sampled from is %. Thus S
(t)
rel measures the information lost when

using assuming %
(t)
cg upon observation of ~p(t) when it is actually being sampled from %

(t)
fg .

This wonderfully quantifies the intuition that has been around since Jaynes that entropy
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production is a loss of information that is dynamically written to inaccessible degrees of
freedom. In fact, in the context of stochastic thermodynamics, the authors of [14] show
that this is indeed the case.

∆S
(t)
tot = ∆S(t)

sys + ∆S(t)
env = diS

(t)
tot = S

(t)
rel (63)

The Kullback-Liebler divergence is non-negative, and therefore (63) is consistent with
diS ≥ 0.

Before moving on, we point out the similarity with nonequilibrium PME. Again
start with some initial macroscopic constraint ~p(0) and infer an initial microscopic dis-
tribution in the form of a statistical operator ρ(0). Use the time evolution of the macro-
scopic constraints, via an effective theory or measurement/observation, to produce the

course-grained distribution ρ
(t)
cg , similar to (53). The fine-grained statistical operator

is produced via unitary time evolution with the appropriate many-body Hamiltonian.

That is, ρ
(t)
fg is the solution to i~ρ̇(t)fg =

[
H, ρ

(t)
fg

]
. Since the nonequilibrium PME has

been used (as shown above) in the context of Classical Irreversible Thermodynamics,
this could open the door for testing (63) in more traditional settings, in addition to
stochastic thermodynamics.

Entropy Production as Correlation Between System and
Reservoir

Another result bolstering the information-theoretic notion of entropy production
as a loss of information to inaccessible degrees of freedom is developed in [15]. Consider
a quantum system in contact with r finite reservoirs. By nature of being a reservoir,
the corresponding Hamiltonian of each is time-independent and denoted as Hr. Being
initially in thermal equilibrium, the associated density matrices for the reservoirs are
ρr(0) = ρeqr = exp

(
− βrHr

)
/Zr. At time t=0 the quantum system, with Hamiltonian

Hs(t), is connected to the reservoirs by switching on an interaction term V (t). The total
Hamiltonian is then

H(t) = Hs(t) + V (t) +
∑
r

Hr (64)

Initially the system and all reservoirs are independent an uncorrelated. The initial den-
sity matrix for the full set up is then

ρ(0) = ρs(0)
∏
r

ρr (65)

Since the evolution of the full system is unitary, the total entropy is time-translation
invariant. This can be used to analyze the time-dependent entropy of the system that
is in contact with the reservoirs

S(t) = −Trρs(t) ln ρs(t) (66)
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ρs(t) is the trace of ρ(t) over the reservoir degrees of freedom and it’s time evolution is
non-unitary. Hence the system entropy in (66) is in general a function of time. Using
−Trρ(t) ln ρ(t) = −Trρ(0) ln ρ(0) = −Trρs(0) ln ρs(0) −

∑
r Trρr(0) ln ρr(0) we find the

entropy change for the system to be

∆S = S(t)− S(0)

= −Trρ(t) ln
[
ρs(t)

∏
r

ρeqr
]

+ Trρ(t) ln ρ(t)

+
∑
r

Tr
[
ρr(t)− ρeqr

]
ln ρeqr

(67)

This is of the familiar form ∆S(t) = ∆eS(t) + ∆iS(t), and after some algebra we find

∆eS(t) = −
∑
r

βr
(
〈Hr〉t − 〈Hr〉0

)
(68)

where 〈Hr〉t = Tr[Hrρ(t)] and 〈Hr〉0 = Tr[Hrρ(0)]. This is essentially just deS = dQ
T

for each reservoir. The entropy production again takes the form of a Kullback-Liebler
divergence,

∆iS(t) = D
[
ρ(t)||ρs(t)

∏
r

ρeqr
]

(69)

D is the quantum equivalent of the Kullback-Liebler divergence and is given by

D
[
ρ||ρ′

]
≡ Trρ ln ρ− Trρ ln ρ′ (70)

The information-theoretic interpretation of entropy production here is the informa-
tion lost by assuming the system never becomes correlated with the reservoirs. That is,
the entropy production is the amount of information about the system flowing into the
reservoirs, and thus becoming inaccessible.

Concluding Remarks and Discussion of Irreversibility

Through some recent work in nonequilibrium thermodynamics we have come to see
that entropy production is the loss of information that is written to inaccessible degrees
of freedom. This effect can be seen indirectly through macroscopic effects (58) (62),
or directly via correlations with external reservoirs (69), and is nicely quantified using
information theory. This is the fundamental difference between deS and diS, which
both contribution changes in the entropy S = H[micro|macro]. deS moves information
around in degrees of freedom that are macroscopically accessible, while diS quantifies
information being irreversibly lost to inaccessible degrees of freedom.

To give some more insight into this notion, consider the classic thermodynamics
problem of the expansion of gas in a box. The box is partitioned in two via a movable
wall with the gas on one side. Expansion or contraction occurs from motion of the wall.
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If the expansion happens quasi-statically then there is no entropy production and the
process is reversible. The gas can be compressed back to the original state and the
information lost during expansion can be recovered. Otherwise there is a non-negative
entropy production and the expansion produces irreversible changes.

How is information not irreversibly lost during quasi-static expansion? The answer
comes from a combination of insights provided by Boltzmann and Jaynes. Boltzmann
developed statistical mechanics and was the first to think of entropy as being related
to the number of microstates associated with a macrostate (this number is called the
multiplicity of the macrostate). He saw the 2nd Law as a consequence of increasing
multiplicity. The equilibrium macrostate is the one that can be realized in the most
number of ways. Jaynes thought of thermodynamics as an inference problem. Given
the macroscopic constraints, what is the best inference that can be made about the
microstate of the system? (These two views are completely equivalent. Information
theory had not be formulated in Boltzmann’s time, so while he was thinking in these
terms he did not have the formal context of information theory that we have now). The
key to why quasi-static processes have no irreversible losses of information is in the nature
of how the constraints change in quasi-static processes. By definition, the constraints
change so slowly that the system always remains in equilibrium and the process is a
locus of equilibrium states. The fundamental nature of the constraints are the same at
all points in the process, and thus the inferences we make are of the same nature. In
Boltzmann terms, the multiplicity always remains at a maximum during the process.
As the constraints slowly change so do the maximum value of the multiplicity, but
the maximum is always maintained. This is why information flow only occurs through
macroscopic degrees of freedom in quasi-static processes, and hence why that information
can be recovered. One of the most visually stunning examples of information flowing
through macroscopic degrees of freedom and then being recovered is the reversibility of
low Reynolds number flow. There are plenty of fun videos of dye being mixed around in a
clear cylinder, and then the cylinder is turned in the other direction and the dye perfectly
de-mixes. Information certainly changes during the mixing, as deS does change the
information/entropy, it just does so in a reversible manner. This is why that information
is recovered after de-mixing.

Contrast this to an irreversible process like completely removing the barrier from
the box of gas rather than slowly sliding it along. Now the nature of the macroscopic
constraints fundamentally change. In this example it has a jump discontinuity but there
can be irreversible processes where this is not the case, like rapid compression of the gas
etc. The sudden removal of the barrier creates thermodynamic forces and fluxes on the
macro scale that are new types of constraints. Inference is now memory-dependent and
complex micro scale interactions and correlations are occurring that can not be fully
accounted for. We have seen some in-depth mathematical analysis of how this produces
an irreversible loss of information. In Boltzmann terms, the multiplicity is no longer
held at the maximum possible value at all times. Think of the standard Gaussian curve
for multiplicity seen in introduction statistical mechanics textbooks for simple problems,
like the gas in a box. The single Gaussian curve of multiplicities is for a fixed set of
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constraints. In a quasi-static process, the system is always at the center of the Gaussian
as the Gaussian slowly changes in response to the slow changes of constraints. While in a
non quasi-static process the system is suddenly pulled off the center of the Gaussian. For
the gas in a box, when it is in equilibrium in one half of the box with the wall in place it
is sitting at the top of the multiplicity Gaussian corresponding to that constraint. Once
the wall is removed, the multiplicity Gaussian for the eventual equilibrium state of being
evenly distributed in the whole box is completely shifted. Where the system was at the
center of the old Gaussian, it is now way off to the side somewhere on the new Gaussian.
The march towards the new center is where the irreversibility occurs.

To close, we look at another interesting notion of entropy production that is know
as the Crooks relation [16]

σ[x(t)] = ln
P [x(t)]

P̃ [x̃(t)]
(71)

where P [x(t)] is the probability of the forward process happening, while P̃ [x̃(t)] is the
probability of the reverse process under reverse protocol. While (71) does not immedi-
ately seem information-theoretic in nature it certainly is a natural way to think about
entropy production, which quantifies the irreversibility of a process. However, [14] and
[15] both have shown (71) to be consistent with (62) and (69). That is, the loss of
information to inaccessible degrees of freedom during the forward process is related to
the difference in likelihood of the reverse process occurring. It is interesting to note that
Bennett had this notion in mind when he was thinking of the entropy production in
RNA transcription [17]. He was directly concerned with the relation between informa-
tion transduction (computation) and thermodynamics, and intuitively made us of (71)
before Crooks had formulated it. Bennett was thinking of energy dissipation via the
entropy production as given by the Crooks relation (71) while at the same time thinking
about the loss of information during the transcription process.
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