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Abstract. The Monte-Carlo Simulation of simplest nearest-neighbour
Ising model was ran on four different spin systems. Random spin flipping
on each step of the simulation was used to create sequence of 0s (spin does
not flip) and 1s (spin does not flip). Entropy rate of these sequences was
then compared to thermodynamic entropy of the systems and showed
strong similarity to it.

1 Monte Carlo simulation of Ising Model

Systems of spins can be described with different Hamiltonian models. Ising model
is one of the simplest and most popular of such models. In Ising systems, spins
are sitting in the nodes of the regular lattice and assume values Si = ±1. Energy
of the magnetic interactions between the spins is given by the expression:

H = −J
∑
〈i,j〉

SiSj (1)

Summation here is taken over all pairs of nearest neighbours in the lattice. In
ferromagnetics coupling J is positive, so at low temperatures, when total energy
of the system is small, all spins are aligned. As temperature increases, thermal
fluctuations make them disordered.

A spin can change its orientation and the likelihood of this change depends
on energy gain associated with the change and temperature of the system. At
each step of Monte Carlo simulation we choose a random spin and flip it with
certain probability. Different algorithms use different expressions for probability.



In my simulation I used ”heat bath” update algorithm that follows following
steps:

– Flip random spin

– Find energy change ∆E, associated with this flip.

– Keep the spin flipped with probability p = 1
1+exp ∆E

T

The lattice is usually initialized with randomly oriented spins and periodic
boundary conditions, then updated enough times (I used 4000 × size of the
lattice updates) to bring it to thermal equilibrium at a given temperature. This
initial stage is called ”thermalization”.

After it is over, we can update the system further, measuring its energy, mag-
netization and other thermodynamic properties after each update and averaging
them to find their means. I used 10000 × size of the lattice updates to do these
measurements.

This figure shows average energy of several 2D lattices in J units as function
of temperature. At zero temperature all spins are aligned and energy per site is
−J · (number of nearest neighbours)/2 = −2J . As the temperature grows, spins
become disordered ant total energy approaches zero.



Magnetization, that is equal to absolute sum of all spins, divided by the
size of the lattice, also depends on the temperature. It equals to one at zero
temperature and zero as high temperature.

We are particularly interested in the entropy of the system. It can be calcu-
lates as the integral

S(β) = Eβ −
∫ β

0

Edβ (2)

where β = 1
T . Normalized by the size of the lattice, entropy equals to zero

when all spins are ordered and approaches one at high temperatures when each
spin is equally likely to be oriented up or down. Notice that to find entropy at a
given temperature T we need to measure E(T ) for all temperatures larger than
T to perform numerical integration.

The whole spin lattice can in principle be described with binary alphabet, for
example ascribing symbol 1 to spin up and 0 to spin down, but the information
analysis of such system, having two spacial dimensions and evolving in time, can
be complicated. We would like our simulation to produce a binary string that
we would be able to run information analysis on. I used the spin flips string as
such string: on every step of Monte Carlo simulation, if the spin was flipped, I
appended 1 to this string. If the spin kept its orientation, I appended 0.

Then I ran Bayesian analysis on this string of 0s and 1s and acquired entropy
rate at each temperature for square lattice of 8×8 spins. Plots of thermodynamic
entropy and of entropy rate look remarkably similar.

It is not surprising for them to approach the same values in the limiting cases
of T → 0 or T →∞. At zero temperature all spins keep their orientation, so the
simulation produces sequence of all zeroes, which has zero entropy rate. At high
temperatures, spins flip independently of their neighbours, with 1/2 probability.



Simulation generates sequence of zeroes and ones that is equivalent to the output
of fair coin. Such sequence has entropy rate of 1.

The surprising part of the plot is how (relatively) well two curves agree
between these two limiting cases. Thermodynamic entropy seems to be system-
atically lower than informational entropy rate, but that might be explained by
underestimated integral in the entropy expression. I obviously cannot integrate
numerically all the way to T =∞, so the upper tail of the integral is cut short.



First of all, it is remarkable that global entropy of the system, that depends
only on model Hamiltonian and configuration of the lattice matches so well
entropy rate of the local updates of the lattice state. It would be interesting to
investigate the theory behind this match and explain it analytically.

If we can indeed prove and show that for different lattices thermodynami-
cal entropy can be approximated with entropy rate of flips sequence (perhaps,
with some necessary adjustments and normalizations), it would make entropy
measurement much faster. We would no longer need to measure E(T ) on the
whole interval [T,∞), single simulation at the temperature of interest would be
enough.

2 Different lattices

While mathematical proof of the equivalence of two entropies might be too ambi-
tious goal for this small project, running the simulation on different lattices and
comparing thermodynamical entropy and entropy rate in each case is definitely
doable.

I investigated three other lattices in addition to previously shown 2D. They
are all square lattices, all described with the same Hamiltonian (1) and only
differ in their dimensions.

1D lattice is just a chain of spins, with two neighbours for each spin. Ladder
(also called 1.5D) and bilayer (also called 2.5D) are special cases, which can
exhibit both properties of higher and lower dimensional lattices.

I ran Monte Carlo simulation on all four lattices and acquired their energies
and magnetizations as functions of temperature. Energy at zero temperature is
negative and proportional to the number of nearest neighbours (or coordina-
tion number) of each lattice. Magnetization starts at 1 at zero temperature and
becomes zero as temperature increases. Notice that transition temperature is
different for different lattices.





Like before, the most interesting thermodynamical quantity in these simula-
tions is entropy and its relationship to entropy rate of the spin flips sequence.

The third image on the previous page shows simulated thermodynamical
entropies (colored lines) and entropy rates of spin flips (black lines). The lines
seem to be in good, though not perfect, agreement.

3 Critical temperature

Both condensed matter theorists and experimentalists are interested in the phase
transition between ferro- and paramagnetic states of the spin system. Second
order transition is characterized by singularities in the second derivative of the
free energy at so called critical temperature(temperature of the phase transition).

Heat capacity and magnetic susceptibility are examples of such derivatives
and both of them show peaks near critical temperature (vertical grey line) for
2D lattice. We observe finite peaks rather than singularities because the system
has finite size.



Vladimir Iglovikov in project ”Information and Order Parameters in the
Gauge Ising Model” for Natural Computation and Self-Organization class in
Spring 2014 has found another quantity that peaks at critical temperature: ex-
cess entropy or shared information between the past and the future of spin flips
string.

Unfortunately, I failed to reproduce this result: Bayesian inference algorithm
modeled the ε-machine that generated 0s and 1s sequence as a biased coin with
only one state and zero excess entropy. Only at very low temperatures, when the
fraction of 1s in the sequence was less than a few percent, Bayesian machine did
sometimes have more than one state. I am unsure whether this result is reliable.

4 Future development

I have already raised some points that might be interesting to look at in the
future and I am going to list them again:

– Can the relationship between thermodynamical entropy and entropy rate of
the spin flips be proven mathematically?

– Would this relationship hold for other spin systems, such as 3D lattices,
hexagonal lattices, systems with continuous spins or systems, described with
more complicated Hamiltonian?

– Can we use other symbol strings for similar purposes? For example, string
of states of a given spin rather than string of random spin flips? Will the
result differ?

– Can the results be useful for computing entropy? Will informational analysis
save computation time?


