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The Pitch

High-speed delivery of baseball to batter, who wants to hit it or let it pass
(ball vs strike).
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Pitch Types

Many wind-ups look similar (change-up identical to fastball, four-seam vs
two-seam look identical). Prediction important!
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existing prediction methods

Hitters use a wet-ware recurrent neural net (brain) to do real-time motion
recognition. This works better for some pitchers than others...Mostly it’s
guesswork.
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pitchf/x

”All pitchers are liars or cry-babies” –Yogi Berra
But data doesn’t lie.
Pitchrx software package, baseballheatmaps.com, the MLB, and mariadb
result in a queriable relational database of every pitch since 2008.
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My Dataset

Only Matt Cain
Only right handed hitters
Only well-ordered data (could use more work)
Classify pitches into 5 types (Thank you, pitchf/x)
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Entropy

Entropy Results go here
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Subtree Merging

Given the large alphabet size Subtree merging seems natural.
Hypothesis: Start state will emerge naturally from data, no need to break
up data into at-bats.
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partition dataset further

Just use 1 for fastballs and 0 for off-speed pitches, then Bayesian inference
becomes at least feasible
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Bayesian Inference

A few memory-intensive compute hours later...
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Bayesian Inference

A few memory-intensive compute hours later...
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In the next week or so...

I’m working on ways to refine the inference methods to work on short
samples, like per at-bat, per inning, or per-game
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Thanks!

Any Questions?
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